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The Environmental Protection Agency (EPA) has set forth guidelines for drinking 

water to ensure the safety of the public from harmful contaminants and pollutants. 

Current standardized methods for the detection of water borne toxins and pollutants are 

expensive, and vague in their analysis: qualitative and quantitatively. We introduce a data 

fusion model using Dempster-Shafer Theory to qualitatively detect multiple 

combinations of analytes suspended in Toluene. The benefits of data fusion model are its 

ability to be extended for additional sources of evidence such as pH, turbidity, and 

electrical conductivity and its ability to handle epistemic uncertainty. In addition, we 

develop a method of modeling spectroscopy data and an ability to synthetically add 

spectroscopy noise and perturbations to the signal. This novel chemometric detection 

method that is introduced has reported 99% detection under the most extreme noise 

condition of η=2.0, using cepstral coefficients as an evidence source when fused over all 

the simulated spectra data. This was an increase in the averaged recognition using 

correlation coefficients by 46.3 percent. 
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Chapter 1

Introduction

1.1 Purpose

The technology of UV/Vis spectroscopy allows the modern user to accurately

measure light absorption and emission within the ultraviolet-visible region of the

electromagnetic spectrum. UV/Vis spectroscopy is routinely employed to determine

the presence, and/or concentration of a wide array of analytes in a sample. This

method is preferred over other methods because it allows for both qualitative and

quantitative analysis. UV/Vis spectroscopy has high levels of accuracy, sensitivity,

reproducibility, and is cost effective. These advantages of using UV/Vis spectroscopy

makes it particularly well-suited for water safety testing.

In the United States, the Environmental Protection Agency (EPA) is responsible

for ensuring water safety by establishing guidelines that mandate methods and

schedules for testing. The EPA’s National Primary Drinking Water Regulations

identifies microorganisms, disinfectants and their byproducts, inorganic and organic

chemicals, and radionuclides as regulated contaminants. Other recommended, but

non-enforceable guidelines, include acceptable pH levels, turbidity, and odor.

Innovative methods are being developed for an efficient and integrated system

for the detection of water contaminants destined for consumption. These detection

1
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methods extract key variables (components or factors) and then apply clustering

schemes for classification. Parallel Factor Analysis (PARAFAC), Principle Com-

ponent Analysis (PCA), and various other clustering schemes are currently being

explored. Although these methods have been shown to be effective, there are some

disadvantages.

For example, PARAFAC may be ineffective when confronted with missing values

[3] [4]. PARAFAC’s effectiveness is dependent on linear proportionality factors [5],

and outliers can reduce PARAFAC’s effectiveness [4]. In the case of PCA, the

rotational scheme prevents direct measurement [6], and in non-ideal cases, noise can

be potentially modeled [6] [7].

In addition to these disadvantages, the aforementioned methods do not account

for epistemic uncertainty. Epistemic uncertainty is the lack of knowledge about

the system, which can be reduced by increasing the amount of relevant data or

evidence [8]. The implementation of uncertainty to represent a process when using

mathematical models is an essential part of the numerical representation. The

aforementioned methods only account for aleatory uncertainty, which is caused by

random variability and is not reducible [8]. This can be modeled from historic data

sets via probability distribution models [9] [8]. Dempster-Shafer (DS) Theory is a

method that accounts for epistemic uncertainty, which combines evidence to reduce

uncertainty while achieving a more accurate decision.

Our initial intention was to develop a detection method for water contaminants

destined for consumption. However, the scope of the project was narrowed as a direct

result of complications that arose during the acquisition of water fluorescent data.

Therefore, the study proceeded with the purpose of achieving two aims. First, we

aimed to design a functional synthetic spectroscopy database to resemble a realistic

spectroscopy experiment. The second aim was to investigate the effectiveness of DS

Theory as a novel qualitative method for detection of analytes using spectroscopy.

Despite the specific focus being amended, applications for this work remain wide-

ranging and have significant merit in the field of chemometrics.
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1.2 Background

The physical mechanisms governing spectroscopy are a product of the interactions

between electromagnetic energy and matter. This section discusses the basics of the

physics and chemistry that are related to spectroscopy. This begins the foundation

for our discussion on how we develop the spectroscopy database in Chapter 2.

1.2.1 Electromagnetic Radiation

Electromagnetic Radiation is a type of energy that is emitted or absorbed by

particles. Light is a form of electrical magnetic radiation [10]. We classify the

type of electromagnetic radiation (radiowaves, microwaves, infrared radiation, visible

light, ultraviolet radiation, etc.) by either wavelength or frequency, which are specific

ranges in the electromagnetic spectrum. UV/Vis spectroscopy’s spectrum ranges from

approximately 185 − 700nm, shown in Figure 1.1. The wavelength is related to the

frequency and speed of light by

ν =
c

λ
, (1.1)

where ν is the frequency, c is the speed of light 2.998·108m/s, and λ is the wavelength.

Figure 1.1: Electromagnetic Spectrum.

The Planck-Einstein equation 1.2 defines the relationship between the energy of a

photon, E, and the corresponding frequency of radiation, where h is Planck’s constant
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6.626 · 10−34m2 kg/s:

E = h · ν =
ch

λ
(1.2)

Equations 1.1 and 1.2 describe the proportional relationship between photon energy

and frequency, ν, and the inverse proportionality between photon energy, E, and

wavelength, λ.

Energy and Matter

Specific wavelengths of light interact with matter differently. This interaction alters

the wavelength and intensity properties of the incident beam of light. The product of

this interaction is then used to qualitatively and quantitatively analyze matter by the

amount of energy the specimen absorbs or emits. This absorption (blue) or emission

(red) of energy is represented as an intensity that changes as a function of wavelength,

shown in Figure 1.2. In Figure 1.2, the absorption (blue) and emission (red) intensity

Figure 1.2: Absorption and Emission Spectra.

is normalized to graphically represent both absorption and emission simultaneously.
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1.2.2 Absorption Spectroscopy

The designs of absorption spectroscopy instruments vary by light source, collimators,

and photomultiplier tubes (PMTs). The general conceptual design of absorption

spectroscopy is demonstrated in Figure 1.3. An incident beam of light, I0, is projected

through the sample to detect the transmitted light intensity, I, by a PMT. Beer-

Figure 1.3: Overview of Spectral Absorbance.

Lambert’s Law explains how the incident beam changes as it travels through the

medium and its relationship to absorption. There are two basic rules, which combined

constitute Beer-Lambert’s Law [10]. First, “Lambert’s Law states that the fraction of

light absorbed by a transparent medium is independent of the incident light intensity,

and each successive layer of the medium absorbs an equal fraction of the light passing

through it”. These successive layers of medium that absorb the light lead to an

exponential decay of the light intensity given by

log10

(
Io
I

)
= k`, (1.3)

where ` is the pathlength (the distance light travels through the medium), and k is the

medium constant (a unique constant that is dependent on the chemical composition

of the medium). Second, ”Beer’s Law claims that the amount of light absorbed is

proportional to the number of molecules of the chromophore through which the light

passes [10]”. A chromophore is defined as a molecule that absorbs light at certain

wavelengths. Therefore, the medium constant, k, is a function of the concentration
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of chromophores. This is defined by

k = εC, (1.4)

where C is the concentration of the chromophore, ε is the molar extinction coefficient.

Therefore, equation 1.3 can be rewritten as

A = log10

(
Io
I

)
= εC`, (1.5)

where A is the absorbance. Although the molar extinction coefficient changes as

a function of the wavelength, it is typically denoted in the general form as ε. An

alternative form explicitly denotes the molar extinction coefficient and absorbance

with superscripts (Aλ and ελ) to indicate their dependence on the wavelength.

1.2.3 Emission Spectroscopy

Emission spectroscopy is widely used in analytical measurements and scientific

investigations. The emission spectrum provides an abundance of information about

the chemical composition by the way the molecule absorbs and emits energy. In

order for a molecule to emit electromagnetic radiation, it first must absorb the

electromagnetic radiation energy. This process of absorption can only occur when

the difference in energy between the ground state, E2, and excited states, E1, of

an atom is equivalent to the energy of the electromagnetic radiation applied to the

molecule. Therefore, the difference in energy between the two states corresponds to

the absorbed photon energy, shown by

hν = E2 − E1. (1.6)

When the sample absorbs electromagnetic radiation, the electrons in its orbitals

are excited and then relaxed causing an emission of light. This excitation causes
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the electrons to jump from the lowest unoccupied molecular orbital (LUMO) to its

highest occupied molecular orbital (HOMO). This emitted energy is detected by the

spectrometer and recorded in the form of an emission spectrum. A general diagram

of this process is demonstrated in Figure 1.4, where hν1 is the incident beam of a

specific excitation wavelength, and hν2 is the emitted energy at a new wavelength.

The wavelengths, at which these absorptions occur are unique to the types of atoms

or molecules present within the sample. This provides a qualitative and quantitative

analysis of the sample. The emission spectrum that is generated is a spectral signature

unique to the sample.

Figure 1.4: Overview of Excitation/Emission.
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Chapter 2

Generating a Synthetic
Spectroscopy Database

The unavailability of open source spectroscopy data and the difficulty in direct acqui-

sition of spectroscopy data via experiments are significant hurdles in the development

of effective detection algorithms associated with such data in chemometrics. To

address this issue, we sought to develop a method to generate a synthetic spectroscopy

data bank which attempts to faithfully capture the operationally relevant features of

fluorescent spectra. We wanted this method to possess the ability to account for

the variations arising from different excitation wavelengths, multiple combinations of

chemical mixtures, different apparatus and effects of user error.

2.1 Data from PhotoChemCAD

To generate such a synthetic database, we started with a sparse amount of reputable

data from PhotoChemCAD [11, 12]. To achieve our objective with this limited set of

experimental data, we made several assumptions:

• There is no chemical quenching.

• The spectral resolution is accurately depicted through interpolation and

decimation.

• All path lengths are 1 cm.

8
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• Accurate depiction of the molar absorptivity is projected by scaling the

absorption spectrum by cited molar extinction coefficients.

• Beer-Lambert’s law is obeyed.

• Concentrations are below 1µM to minimized inner filter effects to achieve

additive absorption and emission spectra.

From PhotoChemCAD, we chose multiple chemicals within the same solvent, Toluene.

The analytes selected were from two chemical classes: oligopyrrole and polycyclic

aromatic hydrocarbons. These two criteria were selected to obtain data that are

similar in chemical composition. The resulting strong spectral similarities create a

“non-trivial” data set for classification and quantification purposes. The chemicals

that were used in the database are listed in Table 2.1 and 2.2.

The data from PhotoChemCAD provide neither the concentration of the analytes

nor the emission characteristics at different excitation wavelengths. In our data set,

we acquire these two quantities directly from published results for spectral modeling

see Table 2.1 and 2.2. Epsilon, ε, enables us to account for different concentrations of

the chemical; and the quantum yield, ΦF , enables us to calculate different emissions

spectra at various excitation wavelengths. With these quantities accounted for, we

are able to generate a more realistic data set.

2.1.1 Preprocessing of Spectral Data

The spectral data from PhotoChemCAD is an agglomeration of various sources, where

acquisition parameters are distinctive from each other. The spectral data from the

selected chemicals are different in their wavelength range and optical resolution. To

ensure proper manipulation among different chemical spectral vectors, the length and

indexing of the vectors are required to be equivalent. The optical sampling of the

spectral vectors obtained were either 0.25nm, 0.5nm, or 1.0nm; hence, the vectors

were interpolated or decimated to get values corresponding to 0.5nm. Each vector

was padded with elements of value 1.0 · 10−20 to provide a uniform wavelength range
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Chemical Solvent
Epsilon (ε)
in cm−1/M
at λEx

Quantum
Yield
(ΦF )

Cited

5,10-Diaryl Chlorin Toluene
89, 100 at
414nm

0.260 [13]

5,10-Diaryl Mg-oxoChlorin Toluene
191, 000 at
408nm

0.100 [13]

5,10-Diaryl oxoChlorin Toluene
174, 000 at
414nm

0.130 [13]

5,10-Diaryl Zn-Chlorin Toluene
186, 000 at
412nm

0.083 [14, 13]

5,10-Diaryl Zn-oxoChlorin Toluene
209, 000 at
408nm

0.040 [13]

Bis(5-mesityldiprinato)zinc Toluene
115, 000 at
487nm

0.360 [15]

Bis(5-phenyldiprinato)zinc Toluene
115, 000 at
485nm

0.006 [15]

Magnesium Octaethylporphyrin Toluene
408, 300 at
410nm

0.150 [16, 17]

Magnesium Tetramesityporphyrin Toluene
446, 700 at
426.5nm

0.170 [18, 17]

Magnesium Tetraphenylporphyrin Toluene
22, 000 at
564nm

0.150 [19, 20]

Table 2.1: Chemicals in the Database: Oligopyrrole.

throughout the entire database of selected chemicals. The value 1.0 · 10−20 is used to

avoid absolute zero errors and to circumvent subsequent complications with vector

and matrix manipulations.

2.1.2 Generating Spectra Corresponding to Various Concen-

trations

A spectrometer takes measurements of light absorption, producing a unique spectral

absorption signature. When taking measurements, the concentration and pathlength

are held constant. The epsilon value, which is a function of the excitation wavelength,

is an intrinsic property of the measured chemical that defines the spectral waveform
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Chemical Solvent
Epsilon (ε)
in cm−1/M
at λEx

Quantum
Yield
(ΦF )

Cited

Perylene-diimide Toluene
44, 000 at
490nm

0.97 [21]

Perylene-Monoimide Toluene
32, 000 at
511nm

0.86 [22]

Perylene-Monoimide(OR)3 Toluene
32, 000 at
479nm

0.91 [22]

Perylene-Monoimide (OR) Toluene
40, 000 at
507nm

0.82 [22]

Table 2.2: Database Chemicals: Polycyclic Aromatic Hydrocarbons.

characteristics. The selected data only provides the absorbance, giving no insight into

the concentration or pathlength. We are therefore unable to distinguish the epsilon

values due to the unknown collection parameters from the various sources provided

by PhotoChemCAD. The measured absorbance of the sample is proportional to the

number of absorbing molecules from the incident light of the spectrometer and it

is essential that the absorbance value is corrected for a meaningful comparison [23].

This correction for absorption is referred to as molar absorptivity or molar extinction

coefficients, which serves to compare spectra and evaluate the relative strength of

the absorbance. In order perform a proper comparison between spectra, we scale the

spectral vector with respect to epsilon at its appropriate listed excitation wavelength

from Table 2.1 and 2.2.

Consider a measured absorption data vector from Table 2.1:

DAbj =
[
dAbj1 dAbj2 · · · dAbjN

]T
, (2.1)

where dAbjk ∈ [0, A],∀k ∈ 1, N , A is an arbitrary positive number, and j is a specific

chemical. These optical absorption measurements were scaled to coincide with cited

molar extinction coefficients (i.e., epsilon) at the corresponding wavelength from
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Table 2.1 and 2.2 via the following equation:

SAbj = DAbj

ελExj
DAbjλEx

C, (2.2)

where ελExj is the molar extinction coefficient of chemical j from Table 2.1 and 2.2,

C is the concentration, and DAbjλEx is the element in DAbj that is associated with

epsilon at the specific excitation wavelength of λEx. With the spectral vector properly

scaled, we assume that each spectral element depicts its appropriate molar extinction

coefficient for all wavelengths. We can now apply Beer-Lambert’s law to expand the

database by altering the concentration while we hold constant the pathlength at 1 cm.

2.1.3 Expanding the Data Set Via Quantum Yield

When a molecule is excited to a higher quantum state of a particle and it transitions

to a lower state, the molecule emits a photon. The more the molecule absorbs energy

the higher potential for it to elicit more photons. The amount of fluorescence emission

is a function of the amount of light absorbed by a molecule. This function is known

as the quantum yield of the fluorescence, ΦF . It is defined as the number of photons

emitted over the total number of photons absorbed [24]. Based on the intrinsic nature

of the molecule and its absorption properties, specific wavelengths are more prone to

be absorbed than others. It is apparent that the excitation wavelength affects the

total intensity of the absorption and concurrently affects the total emission intensity.

By dynamically changing the excitation wavelength, we generate various emission

spectra accounting for the effect of quantum yield.

Consider a measured fluorescence emission spectrum vector from Table 2.1 and

2.2:

DEmj =
[
demj1 demj2 · · · demjN

]T
, (2.3)

where Demjk ∈ [0, A],∀k ∈ 1, N , A is an arbitrary positive number, and j is a specific

chemical. In order to generate further data and for a realistic simulation of different
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excitation wavelengths, we consider Ioλ as the intensity of incident light to excite the

sample. We are able to quantify the summed intensity of the emission fluorescence,

SEm, as

SEm ∝ NEmjSAbjλεΦFjIoλ, (2.4)

where SAbjλε is the element in SAbj that is associated with epsilon at λEx and NEmj

is the normalized vector of SEmj , i.e.,

NEmj =
DEmj

N∑
k=1

DEmj

. (2.5)

Note that the summed fluorescence emission is dependent on the incident light

intensity, the absorbance magnitude at a particular λEx, and ΦF [24]. As shown

in Figure 2.1, different λEx s obtained from the absorption spectrum elicit different

energy contributions to the spectral topology of the emission signal.

Figure 2.1: Emissions as a Function of λ and ΦF .
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2.1.4 Generating Spectra Corresponding to Combinations of

Chemicals

Contingent on our assumption that the absorption and emission spectra are additive,

we expand our database to include linear combinations of chemicals. This assumption

is valid only when Beer-Lambert’s law is obeyed and the inner filter effect is

minimized, thus allowing us to define the linear combination process at the wavelength

of interest as

Aλ1
x+y = Aλ1

x + Aλ1
y = ελ1

x bCx + ελ1
y bCy. (2.6)

One way to introduce an amount of different chemicals is by sampling without

replacement and without ordering. This can be accomplished via 2.7 and expressed

as a binomial coefficient, where k is the number of analytes that are chosen from a

set of n total number of analytes [25]:

Cn
k =

n(n− 1) . . . (n− k + 1)

k!
=

n!

k!(n− k)!
=

n
k

 (2.7)

However, our intention is to evaluate these analytes over different combinations of k.

A visual example of four different chemicals is shown in Table 2.3.

k = 1 k = 2 k = 3 k = 4

Chem(1) Chem(1,4) Chem(1,2,3) Chem(1,2,3,4)

Chem(2) Chem(4,2) Chem(1,2,4)

Chem(3) Chem(4,3) Chem(1,3,4)

Chem(4) Chem(3,1) Chem(2,3,4)

Chem(3,2)

Chem(2,1)

Total = 4 Total = 6 Total = 4 Total = 1

Table 2.3: Evaluating Chemical Permutations.
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Hence, we need to define equation 2.7 over a sum of all k:

k=n∑
k=1

n!

k!(n− k)!
=

k=n∑
k=1

n
k

 . (2.8)

It is apparent that, as we evaluate various n number of sets using equation 2.8,

we can get 2n − 1 different chemical combinations (the −1 is due to the fact that

we are not considering the scenario where there is no chemical present within the

database). For software implementation purpose, we use a binary representation

for chemical presence/absence within the sample. This is illustrated by amending

Table 2.3 with the appropriate coded binary representation, where each bit represents

chemical presence/absence (1=Chemical Present and 0=Chemical Not Present).

k = 1 k = 2 k = 3 k = 4

Chem(1)=[0001] Chem(1,4)=[1001] Chem(1,2,3)=[0111] Chem(1,2,3,4)=[1111]

Chem(2)=[0010] Chem(4,2)=[1010] Chem(1,2,4)=[1011]

Chem(3)=[0100] Chem(4,3)=[1100] Chem(1,3,4)=[1101]

Chem(4)=[1000] Chem(3,1)=[0101] Chem(2,3,4)=[1110]

Chem(3,2)=[0110]

Chem(2,1)=[0011]

Table 2.4: Binary Coding of Chemicals.

2.2 Errors in Spectroscopy Measurements

Spectroscopy signals are also affected by electronic noise, stray light, light scattering,

wavelength accuracy, resolution, stability, baseline flatness, effects of sampling

geometry, and user error [26, 1]. While it is not realistic to accommodate all these

types of errors, we now discuss how several additional sources of error are introduced

into our synthetic spectroscopy data set.
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2.2.1 User Error

Use error is quite common in spectroscopy data. The most common user error involves

a lack of concentration, usually associated with pipetting chemical dilutions at low

concentrations. This error can be further exacerbated if the molar absorptivity is high.

Applying Beer-Lambert’s law to this error, one would expect changes in peak height

and overall spectral area. Another user error involves fluorescent contamination of

the measured sample, or when the detected light is contaminated by Rayleigh or

Raman scatter. This is also contingent on the particle size of the analyte, which is

a function of the variance within the measured spectrum [27]. Figure 2.2 shows how

the emission remains the same with different excitation wavelengths in a pure sample,

and how a contaminate alters the emission spectrum topology at 420nm [1].

Figure 2.2: Emission Spectra of C102 and a Mixture of C102 with the Fluorescent
Impurity C153 [1].

2.2.2 Stray Light

Stray light is the measured light of any wavelength reaching the detector that is not

associated with the bandwidth of the selected wavelength [2]. Stray light manifests

itself as an apparent deviation in Beer-Lambert law. The effects of stray light is a

decrease in absorbance and a reduction of the perceived projected linearity of the

absorbance. This can be described by equation 2.9, where I is the transmitted light,
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Is is the stray light, and Io is the incident light:

Absorbance = − log

(
I + Is
Io + Is

)
. (2.9)

Figure 2.3 shows the effect of stray light on the absorbance [2].

Figure 2.3: Apparent Absorbance vs True Absorbance with Increasing Stray Light
[2].

2.2.3 Wavelength Accuracy

Wavelength accuracy is the inability to preserve the wavelength scaling at the detector

or emitter. This scaling error introduces a shift in the measured wavelength. This

causes our perception of the true λmax to be inaccurate [1, 2]. See Figure 2.4.

2.2.4 Self-Absorption

Self-absorption depends upon the geometric arrangement observing the fluorescence

and high optical densities, which can cause intensity distortion within specific

wavelength ranges. As can be seen in Figure 2.4, the error causes a shifting of

the spectrum. Figure 2.5 is an example of a right-angle observation, where short



www.manaraa.com

18

Figure 2.4: Wavelength Accuracy [1].

wavelength emissions are attenuated by the analyte Anthracence’s absorbance at the

shorter wavelengths [1].

Figure 2.5: Effects of Self-Absorption.

2.2.5 Overview of Spectroscopy Errors

From the discussion above, one notices that a large proportion of the errors associated

with spectroscopy measurements cause the nominal spectrum to be perturbed

in a “smoother” manner. Other types of errors that generate higher frequency



www.manaraa.com

19

perturbations in the spectroscopy measurements are typically modeled as additive

white gaussian noise (AWGN). For the current purpose, our intention is to model the

errors that have a higher potential to elicit a misclassification within the database.

This is what we undertake in the following sections.

2.3 Insertion of Spectroscopy Measurement Per-

turbations

The introduction of perturbations to the database allows for the creation of more

realistic test samples in our prototype data set. This enables us to explore how signal

degradation can affect classification performance of our algorithm.

2.3.1 Windowing

We employ different windowing functions as the basic strategy to alter the spectral

emission and absorption vectors. The windowing foundation is only the basis of

defining, where the types of window functions will be implemented in the spectra.

These locations for each type of windowing function shares a relationship with the

spectral peaks of emission and absorption vectors. In later sections, the windowing

functions are modified to provided either compression or dilation to the spectra within

a specified design range.

Consider the following spectral data vector (corresponding to emission or absorp-

tion):

S =
[
S1 S2 · · · SN

]T
, (2.10)

where Sk ∈ [0, A], ∀k ∈ 1, N , and A is an arbitrary real positive constant. The peaks

of this vector were examined to adaptively create perturbations in the vicinity of these

peaks. This was done to create a unique correlated noise (Dilation or Compression)

to individual spectral vector. This correlated noise is dependent on S’s spectral peak
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“shape”, the windowing function type (t), and the given window size Lw, where

Lw � N . The peaks were sought by implementing the Matlab function findpeaks,

where we set a minimum window distance Lw between peaks. The findpeaks function

yields a vector P, where the maximum peak location for the processed spectra are

represent by the elements of P:

P = [k1, k2, · · · kK ]T , (2.11)

where kp ∈ [1, N ], ∀p ∈ 1, K, and K ≤ N/Lw. Given Lw and N , we determine the

number of windows that will be designed by taking the integer quotient bN/Lwc = C,

where C is the number of windows to be designed. This yields C+1, window segments.

We determine the type of windowing function that will be employed to each window

segment, i, based on our peak indictor vector, Ip. The peak indictor vector informs

us at what window segment a peaks occur by taking the integer quotient plus a unit

ones vector UK , where K is the length.

Ip = bP/Lwc+ UK (2.12)

We use vector Ip to determine, t, the type of windowing function to implement for

Wi,t. Each Wi,t is characterized with one of five possible windowing type functions,

t, on the ith window segment, where ∀i ∈ 1, C + 1 . The ith window segment is

associated to S’s spectral data by [S1+(i−1)·Lw , Si·Lw(i−1)+Lw ].

Wi,t = [W1, W2, · · · WLw ]T , (2.13)

where, Wj ∈ [0, 1],∀j ∈ 1, Lw,∀t ∈ 1, 5,∀i ∈ 1, C. Equation 2.14, handles the residual

data of S, since we only designed C windows.

W(C+1),t = [W1, W2, · · · WN−(Lw·C)]
T , (2.14)
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where, Wj ∈ [0, 1],∀j ∈ 1, Lw, ∀t ∈ 1, 5,∀i ∈ 1, C. The type of windowing function

that is implemented for each i window segment is determined by recursively examining

each case in numerical order until the specific conditions of a case is in accordance

of the criteria. The windowing functions and conditioned criteria are defined by the

following five cases, where for all cases α ∈ [0, 1], γ = (Lw − 1), and β = (1− α
2
).

Windowing Case 1: Hanning Window

Wi,1(j) = .5(1− cos(2π(
j

Lw
))) (2.15)

if and only if ∃i ∈ Ip

Windowing Case 2: Tukey Window

Wi,2(j) =


1+cos (π(

2(j−1)
α(γ)

)−1)

2
, for 1 6 j 6 α(γ)

2

1, for α(γ)
2

6 j 6 (γ)(β)

1+cos (π(
2(j−1)
α(γ)

)− 2
α

+1)

2
, for (γ)(β) 6 j 6 (γ)

(2.16)

if and only if ∃i 6∈ Ip ∧ ∃(i− 1) ∈ Ip ∧ ∃(i+ 1) ∈ Ip

Windowing Case 3: Modified Left Tukey Window

Wi,3(j) =


1+cos (π(

2(j−1)
α(γ)

)−1)

2
, for 1 6 j 6 α(γ)

2

1, for α(γ)
2

6 j 6 (γ)
(2.17)

if and only if ∃i 6∈ Ip ∧ ∃(i− 1) ∈ Ip ∧ ∃(i+ 1) 6∈ Ip
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Windowing Case 4: Modified Right Tukey Window

Wi,4(j) =

 1, for 1 6 j 6 (γ)(β)

1+cos(π(
2(j−1)
α(γ)

)− 2
α

+1)

2
, for (γ)(β) 6 j 6 (γ)

(2.18)

if and only if ∃i 6∈ Ip∧ 6 ∃(i− 1) ∈ Ip ∧ ∃(i+ 1) ∈ Ip

Windowing Case 5: Null Variance Window

Wi,5(j) = 1, for ∀j (2.19)

if and only if ∃i 6∈ Ip ∧ ∃(i− 1) 6∈ Ip ∧ ∃(i+ 1) 6∈ Ip

Each individual Wi,t window vector that is designed will be cascaded in numerical

order to construct, JF , the foundation for creating our dilation compression vector to

modify vector S. Hence, JF is defined as:

JF = [W1,t, W2,t, · · · WC,t, W(C+1),5]T , (2.20)

where Wi,t ∈ [0, A],∀i ∈ 1, C, ∀t ∈ 1, 5, and J ∈ [0, A],∀i ∈ 1, (C + 1). However,

note we only design C windows, the (C+1) window will always default to case 5 to

handle the residual data of S thats smaller than the specified window size, Lw.

2.3.2 Basic Design for Dilation Noise

Once our foundation vector is set, we modify, Wi,t. We demonstrate a few different

methods to modify Wi,t to create the most ideal synthetic noise representation starting

from the most basic. As well, we review the down falls in order to improve upon each

method. We first exemplify synthetic noise to the data by simply dilating the window

locations where the peaks occur. This dilation is scaled by a constant η. Therefore,
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we revamp W1,t, to be scaled by η and force other Tukey windows W2−4,t to one:

ŴD̂1,t
= (η) ·W1,t + ULw , (2.21)

ŴD̂2−5,t
= (0) ·W2−5,t + ULw , (2.22)

JD̂ = [ŴD̂1,t
, ŴD̂2,t

, · · · ŴD̂C,t
, W(C+1),5]T , (2.23)

SS+N = JD̂ diag(S) (2.24)

Figure 2.6: Absorbance Spectrum with Dilation Noise.

We can see in figure 2.6, that by implementing this method we are only given

the option of dilating the spectrum at a constant η. In addition, its worth noting

due to the fixed windowing segments, the alignment of the peaks are not centered

directly over the windowed segment causing shifting of the peak wavelength. In some

scenarios, this maybe considered ideal for further perturbations of the signal, where

the shifting of the peak wavelength is a function of η.
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2.3.3 Basic Design for Compression Noise

Given that we can dilate the signal, in order for us to compress the signal, a

compression vector is designed as such by equation 2.25, 2.26, and 2.27, which is

pictorially represented in Figure 2.8:

ŴĈi,t
= η ·Wi,t + (ULw − ηULw) (2.25)

JĈ = [ŴĈ1,t
, ŴĈ2,t

, · · · ŴĈC,t
, W(C+1),5]T , (2.26)

SS+N = JĈ diag(S) (2.27)

where Dk ∈ [0, A],∀k ∈ 1, N

Figure 2.7: Absorbance Spectrum with Compression Noise.

2.3.4 An Axiomatic Approach for Designing Appropriate

Noise

In the previous sections, we discussed the foundation of the windowing and the

functions that were integral for dilation and compression of the signal by a factor

of η. It’s only sensible to anticipate the above methods as a combination of random
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dilation and compression for a more convincing simulated noise. Considering these

two functions as a whole, comprised of different adjacent windowing techniques,

it is careless to assume that η’s effect on the signal is equivalent. A pragmatic

approach of declaring guidelines for the noise algorithm must be established to

meet the appropriate standards to have unbiased detection simulations when noise

is introduced. In order to fortify this concept of why guidelines are required and to

exam what guidelines that need to be put in place, we introduce an algorithm that

functionally fails as a dilating compressing algorithm.

Failure for Proper Dilation and Compression

Ŵi,1 = ηXWi,1 + (1− η

2
)ULw , (2.28)

Ŵi,2−4 = (η)Wi,2−4 + (1− η

2
)ULw), (2.29)

Ŵi,5 = Wi,5, , (2.30)

JĈD = [ŴD̂1,t
, ŴD̂2,t

, · · · ŴD̂C,t
, W(C+1),5]T , (2.31)

SS+N = JĈD diag(S) (2.32)

where X is a random variable uniformly distributed X ∈ [0, 1] Visually examining the

noise vector, we can note that the hanning windows exceeds the peak magnitude of

one. We may assume the data vector will undergo dilation and compression, but this

is deceiving. When the filter is applied to the data vector the data is not properly

dilated as expected. It begins to become apparent, graphically in Figure 2.8 that,

the magnitude of dilation on the sample may not be comparable to the compression.

However, the improper dilation may be attributed to that particular sample, therefore

simulations are done in the preceding section to examine how the intensity changes

are distributed across numerous samples.
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Figure 2.8: Absorbance Spectrum with Noise Failing to Dilate.

Noise Design Guidelines

The previous example shows the possible cause of how the noise is distributed over the

vector. When examined over numerous trials, it is possible that it may not be ideal

for testing our detection algorithm in the later chapters. Hence, we set guidelines of

what our ideal noise distribution should be in order to achieve an appropriate testing

scenario for our detection algorithm. The guidelines are verified by visual inspection

from simulations that produce the noise distribution.

Synthetic Noise Distribution Ideal Guidelines

1. η will be random for each designed window.

2. Within a single noise vector, Dilation and Compression can occur at various

locations.

3. As η increases, the variance of the distribution will increase.
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4. The noise distribution when evaluating the magnitude between corresponding

elements should be symmetric around zero.

5. The distribution of intensity loss and gain for a entire vector should be

symmetric around zero.

These guidelines will assist in the development of a pragmatic noise that will better

challenge the subsequent detection process. The simulation that is imposed to validate

if the noise distribution meets the guideline criteria is created with a database size

of eleven Chemicals yielding 2Chem − 1 = 2047 chemical combinations , to process

6000 randomly picked chemicals. The correlated noise algorithm applied the following

noise equations 2.28 ,2.28, and 2.28. A normalization for element intensity in equation

2.33 was imposed, since the absorbance can vary so greatly, NEI .

NEI =
S

max(S)
(2.33)

In order to create a robust synthetic noise model, we need to account for dilation

and compression equally. We are able to note the displacement of the intensity to

the corresponding elements with a histogram representation of ∆IE, defined as 2.34.

The parameter η is varied over four simulation to evaluate the effects of the variance

on the distribution, as shown in Figure 2.9, identifying the asymmetry in the noise

distribution. This current noise model does not meet the guidelines stated and is

therefore non-ideal. The model provided would provide questionable results in the

detection algorithm, where it is ambiguous if the algorithm failed or if it was a slight

change in η causes a large shift in the attenuation of the original signal.

∆IE = JĈD diag(NEI)−NEI (2.34)
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Figure 2.9: Histogram of the Change in Intensity of Corresponding Elements.

Figure 2.10 examines the change in intensity over the entire vector, which solidifies

the need for the stated guidelines of (4) and (5). We can can see that from the

distribution that a shifting is occurring as η increases, preventing any type of dilation

to occur within the spectrum. The change of intensity over the entire vector, NV I , of

the normalized spectrum, NV I , was calculated by equations 2.35 and 2.36, to achieve

the histogram Figure 2.10.

NV I =
S∑N

k=1(S)
(2.35)

∆IV =
N∑
k=1

(JĈD diag(NV I)−NV I) (2.36)



www.manaraa.com

29

Figure 2.10: Histogram of the Change in Intensity of Entire Vector.

The cause can be further explained by examining the expectation of the designed

noise vector Wi,1 elements’ j and the adjacent windowing vectors.

E[Ŵi,1j ] = E[η ·X ·Wi,1j + Uj −
η

2
Uj]

E[Ŵi,1j ] = η ·Wi,1jE[X] + E[Uj]− E[
η

2
Uj]

E[Ŵi,1j ] = η ·Wi,1jE[X] + E[1]− E[
η

2
]

E[Ŵi,1j ] = η ·Wi,1j

1

2
+ 1− η

2

The adjacent windowing elements are constants and do not need to be evaluated (Wi,3

Wi,4), but should be examined pictorially with Wi,1 in Figure 2.11.



www.manaraa.com

30

Figure 2.11: Windowing Segment Examining Expectation.

We can now note, pictorially from Figure 2.11, that none of the elements expec-

tations surpass one, ultimately causing a summed loss of intensity or compression

of the signal. We can also note that anytime these adjacent windows occur (Wi,2

Wi,3 Wi,4), we will always encounter a further induced intensity loss. This intensity

lose is not equally compensated by dilation. Furthermore, even when dilation occurs

within the function 2.28 it still compresses the width of the peak, even though it’s

an effective method for dilation. This deficiency can be attributed to the innate way

we window, since the peak of the signal can range anywhere with the window length

Lw. However, we should not see this as a shortcoming since it causes further realist

noise by shifting the spectrum by a function of η.

2.3.5 Approximating an Advantageous Synthetic Noise

We propose the following combined dilation and compression noise functions to fulfill

the following guidelines, based on the windowing foundation function 2.20. In order

to satisfy these requirements, constraints are imposed to the functions. However,

we maintain the functions robustness to dynamically be altered for compression and

dilation.
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Defining a Robust function

This is done by using a binomial distribution to create an indictor function I to

determine what Wi,1 function to implement, compression ŴCi,1 or dilation ŴDi,1 ,

where p = .5 , in equation 2.38. This allows further manipulation of the function

for us to engage the guidelines criteria more stringently by enabling two functions to

competent against each other to achieve an approximate zero mean distribution.

I =

 1, with probablity p

0, with probablity (1-p)
(2.37)

The adjacent window’s elements are dependent on the design of Ŵi,1. We designed

Ŵi,1 from the fundamentals of 2.21 and 2.25 for the compression and dilation vectors.

Thus, the following equations 2.39, 2.40 were developed for the Wi,1 windowing case.

ŴBi,1 = ŴCi,1I + ŴDi,1(I− 1) (2.38)

ŴCi,1 = (Ac1X2η)Wi,1 + ULw(1− Ac2η + Ac3ηX3) (2.39)

ŴDi,1 = (Ad1X1η)Wi,1 + ULw (2.40)

where η ∈ [0, 1], Xi is a uniform random variable ∈ [0, 1],∀i ∈ 1, 3, and Axi are

coefficients to control the functions. In order to avoid discontinuities between the

adjacent windows, due to biasing from each window from the random variable X3,

the following adjustments were made to the following cases:

Ŵi,2 = Wi,2(1− Ŵi+1,1(1)) + Ŵi+1,1(1), for (γ)(β) 6 j 6 (γ) (2.41)

Ŵi,2 = Wi,2(1− Ŵi−1,1(LW )) + Ŵi−1,1(LW ), for 1 6 j 6 α(γ)
2

(2.42)

Ŵi,3 = Wi,3(1− Ŵi+1,1(1)) + Ŵi+1,1(1), (2.43)

Ŵi,4 = Wi,4(1− Ŵi−1,1(LW )) + Ŵi−1,1(LW ), (2.44)
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Constraint A:

Constraint A is to bound the expected dilation and compression functions to be

equivalent. This will assist one functions maximum from overpowering the other and

maintain a equivalent magnitude changes.

1− E[ min
j∈1,LW

(ŴCi,1j)] = E[ max
j∈1,LW

(ŴDi,1)]− 1

1− E[1− Ac2η + Ac3ηX3] = E[Ad1X1η + 1]− 1

1− E[1] + E[Ac2η]− E[Ac3ηX3] = E[Ad1X1η] + E[1]− 1

E[Ac2η]− E[Ac3ηX3] = E[Ad1X1η]

ηAc2 − Ac3ηE[X3] = Ad1ηE[X1]

Ac2 − Ac3E[X3] = Ad1E[X1]

Ac2 −
1

2
Ac3 =

1

2
Ad1

2Ac2 − Ac3 = Ad1

Constraint B:

Constraint B is to bound the variance of the dilation and compression functions to

be equivalent. This will prevent the dilation and compression functions from causing

an asymmetry within the noise distribution.
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V ar[ min
j∈1,LW

(ŴCi,1j)] = V ar[ max
j∈1,LW

(ŴDi,1)]

V ar[1− Ac2η + Ac3ηX3] = V ar[Ad1X1η + 1]

V ar[Ac3ηX3] = V ar[Ad1X1]

A2
c3η

2V ar[X3] = A2
d1η

2V ar[X1]

A2
c3 = A2

d1

Constraint C:

Constraint C is to bound the compression function’s maximum element in that vector

to never surpass the maximum value of the dilation function’s maximum element.

min
j∈1,LW

(ŴCi,1j) ≤ max
j∈1,LW

(ŴDi,1)

Ac1η + 1− Ac2η + Ac3ηX3 ≤ Ad1X1η + 1

Ac1η − Ac2η + Ac3ηX3 ≤ Ad1X1η

Ac1 − Ac2 + Ac3 ≤ Ad1

Constraint D:

Recalling Figure 2.11, based on the topology of design there will always be a

greater intensity loss with the compression function is implemented. To achieve an

approximate zero mean intensity loss for the vector, stated by the fifth guideline,

we minimize the expected intensity loss of the vector when compared in a random

process of dilation and compression by exploiting the binomial equation. Using the

binomial equation to our advantage, we can design the ŴCi,1 and ŴDi,1 functions

accordingly having them achieve an approximate averaged expected intensity value

over all elements, 2.45. In order to account for this average expectation, we account

for the effects of the adjacent windows as well for a proper approximation. In
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the dilations case we used WD = [Wi,5,Ŵi,1,Wi,5] and for the compression case

we used WC = [Ŵi,3,Ŵi,1,Ŵi,4]. Therefore, base on the design of Ŵi,1 for the

compression and dilation we can manipulate our indictors function’s p value to further

optimize the expected intensity to have an approximate equivalent intensity deviation

of compression and dilation.

Ewin = p
1

3 ∗ Lw
(
3·Lw∑
j=1

E[WC ]) + (1− p) 1

3 ∗ Lw
(
3·Lw∑
j=1

E[WD]) ≈ 1 (2.45)

The following approximation was done with α = 1, η = .1, Ac1 = Ac2 = Ac3 = Ad1 =

.5 and Lw = 100, where Ewin = 0.9918 with a p = .33, implementing this optimize

noise at these parameters we manifest others noise vectors at various different η’s

assuming the changes are minute. If desired you can optimize the p for different etas.

In Figure 2.12, we used the aforementioned parameters to designed noise at η = 1,

where simulations of the distributions of element and vector intensity is shown in

2.13.

Figure 2.12: Simulated Optimized Noise.
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(a) Element Intensity

(b) Vector Intensity

Figure 2.13: Histograms of Intensity.
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Chapter 3

Conventional Methods of
Chemometrics

In the field of spectroscopy and chemometrics, Beer-Lambert’s law can be considered

a major cornerstone for detection-related problems. As was discussed in Section 1.2.2,

the molar extinction coefficients for an analyte are unique and they are exploited to

identify compounds and their compositions. The majority of chemometric methods

use the linear relationship of the absorptivity coefficients betoken by the Beer-

Lambert’s law for quantitative and qualitative analysis.

3.1 Quantitative Analysis Methods

The most common practice of UV/Vis spectroscopy is quantitative measurement

of an analyte’s concentration using the absorption spectrum [28]. Calibration

methods or standards are implemented to determine the concentration by graphically

extrapolating the data or by using regression methods [28]. There are various types of

methods of regression analysis, each possessing its own advantages and disadvantages.

Monocomponent analysis is the most basic and easiest method, but it is based on

many assumptions and lacks the realistic occurrences in an experimental design.

Multicomponent analysis methods contain fewer assumptions, but are typically more

complex thus preventing many chemists from utilizing the methods.

36
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3.1.1 Simple Linear Regression

Linear regression is the simplest of the quantitative methods; it falls into the

monocomponent analysis category. Linear regression is typically implemented when

we have an isolated compound and the molar absorptivity is unknown [29]. This

method uses part of the Beer-Lambert’s law which states that the absorption and

concentration are proportional. A reliable measurement of concentration is calculated

by creating a calibration curve, which visually plots absorbance versus concentration.

The way we graph absorbance points on the calibration curve is dependent on the

spectral resolution of the instrument. We may examine the peak intensity, Apeak, if

the resolution is high. If the resolution is low, we evaluate the area of the peak, Aarea,

as in

Cx = β1AArea + β2, (3.1)

where C is the concentration of the compound and β is the calibration coefficients.

Figure 3.1 shows an ideal example (with zero error) of a calibration curve, which

would be simple to solve for the calibration coefficients.

Figure 3.1: An Ideal Calibration Curve.
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When instrumentation or user error is introduced there is no perfect solution

for the calibration coefficients. We are required to find the coefficients by linear

regression. The coefficient values that are chosen produce the least amount of error in

approximating the linear relationship [30]. Linear Regression coefficients are defined

as:

β1 =

∑
i[(Ai − Ā)(Ci − C̄)]∑

i(Ai − Ā)2
; β2 = C̄ − β1Ā, (3.2)

where (Ā, C̄) are the means of A and C values, respectively. This position (Ā, C̄)

is referred to as the centroid [30]. In Figure 3.2, noise has been introduced into

the system depicted in Figure 3.1 and the calibration line was determined by linear

regression.

Figure 3.2: Calibration Curve with Linear Regression

This monocomponent analysis method however is incapable of examining more

then one compound. So, this particular analysis method is only effective for an analyte

that has been physically isolated. [31]. If this method was to be implemented in the

evaluation of a secondary compound, in order to achieve accurate results the spectral

bands could not have any interaction, and would require an additional equation.
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Another disadvantage of using this method is the assumption that only one absorption

value is estimated, making the calibration regression line more susceptible to noise.

Overall, this method’s simplicity limits its reliability and general functionality.

3.1.2 Classical Least Squares Method

The classical least square method of implementing the Beer-Lambert’s law allows for

the examination of multiple spectral wavelengths, compounds, and concentrations.

This method does however make the assumption that the pathlength is kept constant

for all data comparisons. Defining Beer-Lambert’s law in equation: 3.3,

Aλp = βm,λpCm, (3.3)

where the molar absorptivity and pathlength are substituted under β, p is the specified

wavelength, and m is the chemical. We could easily solve for a single constant of β,

but this would be no different than implementing the linear regression model that was

previously discussed in Section 3.1.1. The purpose of classical least mean squares is to

examine multiple β s, where a β coefficient describes the linear relation of absorption

by multiple chemicals at a specific wavelength. Equation 3.4, describes a simple

example of this linear relationship evaluating two different chemicals at two different

wavelengths: Aλ1

Aλ1

 =

βa,λ1
βb,λ1

βa,λ2
βb,λ2

Ca
Cb

+

Eλ1

Eλ1

 . (3.4)

We extend this model over multiple spectra samplings, chemicals and wavelengths by

equation 3.5:

A = βC, (3.5)
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where

A =


A1,1 · · · AN,1

...
. . .

...

A1,P · · · AN,P

 ; β =


β1,1 · · · βM,1

...
. . .

...

β1,P · · · βM,P

 ; y =


C1,1 · · · C1,N

...
. . .

...

CM,1 · · · CM,N

 .

(3.6)

Here, N is the number of samples of experiments run on the spectrometer, P is

the number of wavelengths chosen, and M is the number of chemicals. In order to

approximate β by β̂, we are required to invert C by using the psuedoinverse method

since the matrix is not square. This yields

β̂ = ACT (CCT )−1. (3.7)

3.2 Qualitative Analysis Methods

Qualitative analysis methods of UV/Vis spectroscopy for the identification of analytes

are often accomplished by correlating the sample to a known database [32, 33]. In

Section 1.2.3, we discussed the correlation of the spectrum to the molecular orbital

location. We are therefore able to gain insight into the molecular orbital features

identifying their ground and excited states. This ability to determine electron

placement is incorporated to processes in titrations, for determining titration end

points and equilibrium constants, as well [31].

3.2.1 Principle Component Analysis

Principle component analysis (PCA) generates a new coordinate system by an

orthogonal linear transformation of the previous coordinate system. The new

variables are known as principle components. For example, equation ?? and ??,

demonstrates the linear transformation of a multivariate case of N variables defining
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the first two principle component Z1 and Z2 .

Z1 = a11X1 + a12X2 + a13X3 + ·a1nXN (3.8)

Z2 = a21X1 + a22X2 + a23X3 + ·a2nXN (3.9)

We are able to reduce the dimensionality of a multivariate problem using PCA

by describing the data set by only the initial principle components.These principle

components enhance the variables of the data to aid in their discrimination between

each other. The initial principle components offer the most variability of the data set,

therefore are the most discriminative. The higher the principle component is, the less

variability and hence less discriminative. Figure 3.3 is an example in two-dimensional

space that illustrates how PCA rotates the data.

Figure 3.3: Illustration of PCA Rotating Data to Another Orthogonal Plane.

These dimensionally methods are instrumental in chemometrics because of the size

of the multivariate analysis that is undertaken. PCA is a beneficial way of aiding in

the discrimination of data sets by rotation, however it is still necessary to implement

additional numerical methods to ultimately discriminate different spectra, such as

linear regression, Gaussian mixture models, or a clustering scheme.
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3.2.2 Parallel Factor Analysis

Parallel factor analysis (PARAFAC) is a method used to determine the optimal way

for orientation of the axes to discriminate spectra. PARAFAC uses the intrinsic

properties of the data under study to determine these unique latent factors (i.e.,

hidden factors) to find the optimal orientation. Cattell provided the conceptual

framework for PARAFAC. He examined multiple principles in determining the

optimal discriminating axes for the data set proposing parallel proportional profiles

as the most fundamental principle for determining best fitting axis orientation

[34]. The benefits of parallel proportional profiles is not a rotational indeterminate

formulation, unlike PCA, where rotation is implemented to determine the best fitting

axes orientation. This rotational scheme prevents the reconstruction ability. The

concept of parallel proportional profiles exploits the fact that the variation of two

data set matrices should be some factor of the other. This is done by extracting the

best-fitting unique factor axes (i.e., latent factors) by decomposing the three-way data

cube of factors into individual rank-1 matrices, as shown in Figure 3.4. PARAFAC

uses an iterative procedure performed by an alternating least squares algorithm to

converge on the set of best-fitting axes that can best explain the patterns of expansion

and contraction across each data set slice from the three-way data cube PARAFAC.

When implemented within the context of chemometrics, PARAFAC employs the

following decomposition of the data:

xijk =
F∑
f=1

aifbifckf + eijk, (3.10)

where i is the sample, j is the emission and k is the excitation, aif is the concentration,

bif is emission data, and ckf is the excitation spectrum, f being the vector [4]. See

Figure 3.4.
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Figure 3.4: A PARAFAC Model for the X Data Cube.

As previously mentioned in Section 3.2.1, this method is solely for the manip-

ulation of the axis to aid in the discrimination of features. Additional pattern

recognitions algorithms are necessary to for the detection of a chemical.

3.2.3 Cluster Analysis Methods

Clustering is a method that could be applied after PCA or PARAFAC. Clustering

will enable further classification in a single or in multiple planes, where PCA and

PARAFAC may have difficulty. Clustering has many methods for determining

the cluster size and distance between two clusters. The main concept of cluster

analysis consists of grouping objects that are close together in distance into different

classes [30].

Typical methods of examining distance on a plane are Euclidean distance and

Mahalanobis distance. The simplest of the two is to implement the Euclidean distance

which is just the traditional distance measure defined in

d =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2. (3.11)

Mahalanobis distance differs fundamentally by using the statistics of the data (in

particular, the covariance). The distance between points is then used to form the

clusters using methods such as single linkage method, complete linkage clustering and

average linkage clustering. These are schemes that utilize distance measurements to

determine the final clustering of data.
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Chapter 4

A Dempster-Shafer Theoretic
Method for the Spectroscopy
Detection Problem

4.0.1 General Discussion

In this chapter, we briefly discuss the basics of Dempster-Shafer (DS) theory and

highlight its differences with the Bayesian approach. We then propose how we

develop a DS theoretic method to address our spectroscopy detection problem. Our

approach consists of comparing the feature vectors of an unknown sample (i.e., a

sample containing unknown analytes) with that of a prototype sample (i.e., a sample

from the database containing known chemical analytes) to estimate the concentrations

associated with the unknown sample. For this comparison, we use the correlation

coefficient between the feature vectors of the unknown and prototype samples. When

an unknown sample is compared to all the prototype samples, we get a correlation

vector corresponding to the given unknown sample. We then propose a method

whereby each correlation vector is transformed into a DS theoretic model. With the

different types of evidence sources, we obtain multiple DS theoretic models which are

then fused (using a DS theoretic fusion strategy, such as the Dempster’s combination

rule (DCR), to arrive at a decision regarding the type of analytes in the unknown

sample.

44
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4.0.2 DS Theory and the Bayesian Approach

DS theory is known for its ability to handle imperfect data in an effective and more

intuitive manner [35]. DS theory, otherwise known as belief theory, can be thought

of as a generalization of probability theory [? 36]. One main difference between

the two methods is, while the Bayesian approach assigns probabilities according

to axioms of probability [37, 38], the axiom of additivity is relaxed in DS theory.

For example, consider a case with three possible outcomes Θ = {X, Y, Z}. In the

Bayesian approach, Pr(X) +Pr(Y ) +Pr(Z) = 1, so that Pr(Xc) = Pr(Y ) +Pr(Z),

where Xc is the complement of the proposition X. This is referred to as the axiom

of additivity. DS Theory does not impose this requirement in the way it assigns

“supports” to propositions. In addition, DS theory allows “supports” to be assigned

to the complete power set of possibilities. Contrast this with probability theory

where the probabilities assigned to the “singletons” (in the example, {X}, {Y }

and {Z}) completely determines the probabilities associated with other propositions

(e.g., Pr({X ∪ Y }) = Pr({X}) + Pr({Y })). However, DS theory provides an easy

transition to-and-from probability, a feature that sets it apart from other frameworks

for uncertainty handling (e.g., fuzzy sets).

4.0.3 Uncertainty in Evidence

When a decision is to be rendered, there are two main types of uncertainties one

may encounter: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty

refers to a system behaving in a “random” way. This is accounted for by using historic

data otherwise known as the frequentist approach [9]. Epistemic uncertainty is caused

by a lack of knowledge which is reduced through increased understanding [9, 8].

Traditionally, epistemic uncertainty has been accounted for by Bayesian methods,

but this requires historic information to form a probability of the event [9]. When

historic information is not readily available, it is modeled through Laplace’s inference
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by implementing a uniform distribution, referred to as the principle of insufficient

reason [9].

In the above example, if a probability was assigned to {X} by some past

information, we would be forced to equally allocate the rest of the probability to

{Y } and {Z}. This is due to the axioms of probability and the lack of historical

information, thus constraining us to rely on Laplace’s inference. When the axiom

of additivity is not used as a constraint, we may encounter the mass’s inability to

sum to one [9]. This is associated with the sources reporting the same or conflicting

information. DS Theory is a major tool which allows us to decipher uncertainty

and permits data fusion techniques to reduce uncertainty from imperfect data (such

as, source information that is conflicting or sources reporting similar information)

[39, 40, 9].

4.0.4 Basic Notions of DS Theory

The set of mutually exclusive and exhaustive propositions of interest is referred to

as the frame of discernment (FOD). We take the FOD Ω to be a finite set (i.e.,

Ω = {θ1, . . . , θn}). The basic probability assignment (BPA), otherwise referred to as

a basic belief assignment or mass function is a function m : 2Ω → [0, 1], where 2Ω is

the power set of Ω, such that

m(∅) = 0;
∑
Ai⊆2Ω

m(Ai) = 1. (4.1)

In order to develop a mass function, evidence is required. Evidence is typically

defined subjectively by experts. This evidence is then fused to dynamically update

the mass function to aid in the reduction of uncertainty and to redistribute mass to

the propositions. Perhaps the most common method employed for evidence fusion in
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DS theory is the Dempster’s combination rule (DCR) [41]:

m(Ai) =

∑
Ap∩Aq=Ai

m1(Ap)m2(Aq)∑
Ap∩Aq=∅

m1(Ap)m2(Aq)
, (4.2)

where the evidence provided by the mass functions m1 and m2 are combined to get

the fused mass function m. This is usually denoted as

m = m1 ⊕m2. (4.3)

The DCR is commutative and associative, thus making it convenient to fuse multiple

sources of evidence as

m = m1 ⊕m2 ⊕ . . .⊕mM . (4.4)

For our purposes, we view the outputs of various feature extraction techniques as

sources of evidence or “experts”. These evidence sources are then combined for

evidence fusion used in decision-making.

4.1 Evidence Sources

In Chapter 2, we developed fluorescent and absorption spectra by the generation of

the spectroscopy database. Using these spectra, we extract four different attribute

or feature vectors associated with each fluorescent and absorption spectra. These

feature vectors are then used as evidence sources to be later fused (or combined)

using DS theoretic techniques. See Figure 4.1. We now describe the four types

of feature vectors generated by the evidence sources: discrete cepstral coefficients,

energy content, spectral differential, and a matched filter output.
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Figure 4.1: Various Attribute or Feature Vectors Extracted from an Absorption
Spectrum.

4.1.1 Discrete Cepstral Coefficients

Due mainly to the noise robustness, linear predictive coding (LPC) coefficients

associated with all-pole models of the spectrum are typically used in communications

to capture the spectral envelope information.

One disadvantage of the LPC model is that the predicted envelope spectrum

tends to overshoot and undershoot spectral regions when there are sudden changes

[42]. Discrete cepstrum based methods were designed to combat this issue and

these methods have been refined for enhanced computational speed [42]. We capture

the envelope of the spectrum magnitude by the cepstrum based estimation scheme

described in [43]. The work in [43] utilizes a regularization technique to prevent the
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“ill conditioning” problem associated with this method. We follow the same strategy

in our work.

The relationship between the real cepstrum coefficients and the spectral magnitude

is given by

log |S(f ; c)| = c0 + 2

p∑
i=1

ci cos(2πfi). (4.5)

With regularization, the spectrum estimation error is given by

εr =
L∑
k=1

‖ log ak log |S(f ; c)|‖2 + λR[S(f ; c)], (4.6)

where

R[S(f ; c)] =

∫ 1/2

f=1/2

[
d

df
log |S(f ; c)|

]2

df. (4.7)

The error is minimized in the least-squares sense by

c = (MTM + λR)−1MTa, (4.8)

where

c =
[
c0 c1 · · · cp

]T
;

a =
[
log(a1) log(a2) · · · log(aL)

]T
;

R = 8π2diag
[
0 12 22 · · · p2

]
;

M =


1 2 cos(2πf1) 2 cos(2πf12) · · · 2 cos(2πf1p)
...

...
...

. . .
...

1 2 cos(2πfL) 2 cos(2πfL2) · · · 2 cos(2πfLp)

 . (4.9)

4.1.2 Energy Content

Energy content at various regions within the spectrum has the ability to provide

information about the concentrations of chemicals. A filter bank design was employed
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to generate a feature vector that captures the energy content at localized regions from

the absorption and emission spectra. We used a very simple triangle filter bank design,

which is typically used for speech processing. We drew inspiration from this model to

implement the linear portion of the filter bank under 1 kHz. We used the method in

[44] to design the linear triangle filters. Figure 4.2 shows a design of the linear filter

bank with 29 cascaded filters for our spectrum analysis of energy content. The feature

vector generated captures the energy content, which contains coefficients associated

from the filter bank. Each coefficient generated corresponds to a single triangle filter

that is multiplied with the spectral signal. Therefore, the example provided below

of the 29 cascaded triangle filters will yield 29 coefficients that make up the feature

vector.

Figure 4.2: Triangle filter bank.

4.1.3 Spectral Differential

Differential of the spectral intensity of the signal has been used for many years to

provide more valuable information than the intensity spectrum itself [45, 10]. This

data is typically used to extract information when there are multiple peaks near each

other to highlight the trough between the adjacent peaks [10]. We use the forward
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Euler approximation for the derivative:

dy

dλ
=
yi+1 − yi

∆λ
, (4.10)

where y is the intensity of the spectrum and λ is the wavelength.

4.1.4 Matched Filter Output

Matched filters are commonly used in telecommunications and radar systems to detect

an unknown deterministic signal by correlating it to a set of known signals. We apply

the same concept of detecting an unknown deterministic spectrum by correlating it to

our known set of prototype spectra. We use matched filtering as a method of evidence

for chemical spectra by designing filters to develop maximized signal-to-noise ratio

(SNR) values for each spectrum as a mode of evidence.

Let us consider the output of a linear filter with an impulse response h

corresponding to the input x:

y[n] =
∞∑

k=−∞

h[n− k]x[k]. (4.11)

For our purposes, we assume that the unknown spectrum signal is a member of

the set of prototype spectra and it has been distorted by Gaussian white noise. With

this noise model in place, we designed matched filters for each prototype spectrum

signal within the set. Each matched filter is optimum in the sense that it maximizes

the signal-to-noise ratio (SNR) with respect to additive noise. The impulse response

of the matched filter is given by

h =
1√

sHR−1
v s

R−1
v s, (4.12)

where s is the prototype spectrum signal and Rv is the covariance matrix associated

with the noise v.
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We apply the unknown noise distorted spectrum signal to the database of

prototype filters in obtaining optimized filter outputs. These outputs are calculated

by convolving the unknown signal with the prototype set of spectra. The optimized

filter output y can also be thought of as the inner product of the filter, h, and the

signal with additive noise, s+ v:

y =
∞∑

k=−∞

h∗[k]x[k] = hHx = hHs+ hHv = ys + yv. (4.13)

The associated SNR can be expressed as

SNR =
|ys|2

E{|yv|2}
=

|hHs|2

E{|hHv|2}
=
|hHs|2

hHRvh
. (4.14)

Using the SNR as the objective function, we can evaluate the strongest prototype

matches by calculating the SNR produced by each designed matched filter and

evaluating it with its prototype spectrum. This will produce an array of N SNR

values associated to N spectra. The higher the SNR value that is achieved by using

filter hi, the more likely the unknown spectrum is it is the unknown spectrum si. We

use this array of normalized SNR values as our matched filter output feature vector.

4.2 Proposed DS Theoretic Model

The DS theoretic notion of mass captures the “support” allocated to each proposition

(which may consist of singleton and composite propositions). Contextual consid-

erations (e.g., accuracy, source reliability, source conflicts, etc.) all play a role in

determining the mass to be allocated [9].

4.2.1 Evidence Models to Correlation Coefficients

The prototype samples were processed using the aforementioned methods to generate

prototype feature vectors. These feature vectors corresponding to the complete
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prototype fluorescence spectrum data can be arranged into a matrix form to generate

a prototype feature template:

Tij =


X11 X21 · · · XT1

X12 X22 · · · XT2

...
...

. . .
...

X1N X2N · · · XTN

 , (4.15)

where the subscript i in Tij identifies one of the two types of spectrum data (i.e.,

absorption or emission at a specific excitation wavelength) and the subscript j in Tij

identifies the one of four types of features (i.e., discrete cepstral coefficients, energy

content, spectral differential, and matched filter output). Here, N denotes the number

(or size) of the prototype spectrum data set and T denotes the length of feature vector.

This feature template is associated with the “ideal” fluorescence spectroscopy

data without any additional spectrum perturbations having been introduced. To

determine the prototype spectrum which “best matches” an unknown chemical, we

employ the correlation coefficient which provides a simple yet effective means of

statistically describing the relationship between two sets of data. For our purpose,

given an unknown spectrum, we generate its four feature vectors and then compute

the associated correlation coefficients between these feature vectors of the unknown

spectrum and feature vectors of the prototypes in Tij. A normalized correlation

vector generated thus takes the form

V =
[
V1 V2 · · · VN

]T
, (4.16)

where Vi, i = 1, . . . , N , denotes the positive normalized correlation coefficient between

a feature vector corresponding to the unknown specimen and the ith prototype

spectrum in the data set.
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4.2.2 Correlation Coefficients to DS Mass

In this section, we explore how a DS model can be fitted to represent the normalized

correlation coefficient vector so that it may be treated as a single evidence source.

Regarding this task, not only must we obtain a valid DS model as described in 4.1,

but more importantly, we must ensure that the model captures potential conflicts

reasonably well among prototype spectra that are “competing” for a match with the

unknown specimen. For example, a correlation vector with multiple values of 1 would

indicate that multiple prototype compounds are perfect matches for the unknown

specimen.

Weighting Matrix

To proceed, let us generate the following matrix associated with the normalized

correlation vector in 4.16:

∆V = JNNDN −DNJNN

=


(V1 − V1) (V2 − V1) · · · (VN − V1)

(V1 − V2) (V2 − V2) · · · (VN − V2)
...

...
. . .

...

(V1 − VN) (V2 − VN) . . . (VN − VN)

 , (4.17)

where JNM denotes the N × M matrix with each entry being 1 and DN =

diag [V1, V2 · · · , VN ] denotes the diagonal matrix with the diagonal entries being

{V1, V2, · · · , VN}.

This ∆V matrix examines how each correlation coefficient’s magnitude deviates

relative to all other elements in the correlation coefficient vector in 4.16. The

difference taken between the correlations coefficients can be conceptually thought

of as a “distance” and the sum of the columns of the ∆V is the “sum of distances”

relative to each element, Vi. However, the elements in the ∆V matrix still lack

information about the overall magnitude of the elements in V.
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For example, consider the case where V1 = 0.4, V2 = 0.3, V3 = 0.7, and V4 = 0.6,

yields (V1 − V2) = (V3 − V4) = 0.1, irrespective of the fact that the values V3 and V4

are significantly higher (thus more correlated with the unknown specimen) than the

values V1 and V2 (thus less correlated with the unknown specimen).

To capture the overall magnitude of each element in V, we utilize a weighting

strategy as

∆W = ∆V ◦ JNNDN

=


V1∆V11 V2∆V21 · · · VN∆VN1

V1∆V12 V2∆V22 · · · VN∆VN2

...
...

. . .
...

V1∆V1N V2∆V2N . . . VN∆VNN

 , (4.18)

where ◦ denotes the matrix Hadamard product, ∆Vij = Vi − Vj ∈ [−1,+1], ∀i, j ∈

1, N . The columns of ∆W compare the distance of an element Vi with all the elements

in V and weights Vij with Vi . This weighting of Vi could be thought of as an indication

of the “strength” of the corresponding prototype being a match.

Let us take the same example as before: V1 = 0.4, V2 = 0.3, V3 = 0.7, and V4 = 0.6,

would yield V1∆V12 = (0.4)(0.4 − 0.3) = 0.04 and V3∆V34 = (0.7)(0.7 − 0.6) = 0.07,

which clearly emphasize the correlation coefficients possessing a higher magnitude.

This example demonstrates the need of having both the “strength” and “distance”

components. However, it is important to observe how these components interact with

each other to generate ∆W. Both “strength” and “distance” are required to be high,

in order to yield a high value in ∆W. When one or both components are low, low

values in ∆W are generated. So, ∆W captures not only how the elements in V are

distributed, but also their relative strengths.

For example, consider the case where, V5 = 1.0, V6 = 0.98, V7 = 1.0, and V8 = 0.1.

Then V5(∆V56) = 1(1 − 0.98) = 0.02 and V7(∆V78) = 1(1 − 0.1) = 0.90. This shows

that when a high correlation value, V5, is compared to another high correlation value,
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Figure 4.3: Evaluation of the Range of ∆Wij = Vi∆Vij

V6, a low value is generated for the associated element in ∆W. However, when a high

correlation coefficient value, V7, is compared to a low correlation value, V8, a high value

is generated for the associated element in ∆W. A simulation is provided in Figure

4.3 to demonstrate the ranges and attributes of the ∆Wij = Vi∆Vij function. The

ranges should be noted, where the maximum achievable value is 1 and the minimum

achievable value is .25. The attributes that are worth noting are the exponential

reward of obtaining high “strength” and “distance”, as well as the exponential penalty

of obtaining a low “strength” and “distance”.

Column Weights Vector

Each column of ∆W evaluates a specific Vi against the entire set of correlation

coefficients within V. This captures the strength of each correlation coefficient Vi

relative to all the other correlation coefficients in the correlation coefficient vector,

V. Thus, the summation of the column vectors informs us how each element in V is

different from the other elements and how strongly it matches the unknown specimen.

Let us refer to the sum of all the elements in a column vector as its column weight.
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The column weights, Ci, are calculated as

C =
[
C1 C2 · · · CN

]T
= (J1N∆W)T , (4.19)

where Ci ∈ [−(N − 1)/4, (N − 1)], ∀ i ∈ 1, N . These column weights allow us

to identify the rival correlation coefficients that are legitimately competing to be a

match for the unknown sample. To demonstrate this, take the N = 4 case.

Case 1: Let V = [1, 0, 0, 0]T . This indicates that V1 constitutes a perfect match

with no competing matches. Note that

∆W =


0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

 =⇒ C = [3, 0, 0, 0]T .

Notice how C puts the maximum weight on V1.

Case 2: V = [1, 1, 0, 0]T . This indicates that both V1 and V2 are competing for

being a match. Note that

∆W =


0 0 0 0

0 0 0 0

1 1 0 0

1 1 0 0

 =⇒ C = [2, 2, 0, 0]T .

Notice how C puts equal weights for V1 and V2. This weight is less than what V1

is given in Case 1 because of the uncertainty generated by having two competing

prototypes.
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Case 3: V = [1, 1, 0.9, 0]T . This indicates 3 prototypes competing for being a

match, but with V3 being the slightly weaker candidates. Note that

∆W =


0 0 −0.09 0

0 0 −0.09 0

0.1 0.1 0 0

1 1 0.81 0

 =⇒ C = [1.1, 1.1, 0.63, 0]T .

Notice how C distributes its weights among V1, V2 and V3.

Case 4: V = [1, 1, 0.9, 0.1]T . In this case,

∆W =


0 0 −0.09 −0.09

0 0 −0.09 −0.09

0.1 0.1 0 −0.08

0.9 0.9 0.72 0

 =⇒ C = [1.0, 1.0, 0.54, −0.26]T .

Notice how C de-emphasizes V4 which is in no position to compete with V1, V2, and

V3.

Identification of Potential Focal Elements

The vector C plays a critical role in our development because we can utilize the

column weights Ci to identify the potential focal elements of the DS theoretic model

we propose. To explain, take the “extreme case” where no conflict is present,

V = [1, 0, 0, · · · , 0]T , (4.20)
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which yields

∆W =


0 0 · · · 0

1 0 · · · 0
...

...
. . .

...

1 0 . . . 0

 =⇒ C = [(N − 1), 0, 0, · · · , 0]T . (4.21)

When observing this extreme case, we may say that, as the column weight approaches

(N − 1), the uncertainty regarding the corresponding prototype being a match

decreases. Conversely, the higher the difference between (N−1) and a column weight,

the less likely the corresponding prototype is the correct match. When the column

weight is zero or negative, we become more certain that the corresponding prototype

is not a match.

The inability of the prototype associated to Vi competes against the other

prototypes causing the corresponding Ci to be negative. This is exactly what occurs

in Case 4 in Section 4.2.2, where C4’s magnitude was not high enough to compete

against the others. So, in our model, we neglect the prototypes corresponding to non-

positive values of Ci, thus preventing them from becoming focal elements in our DS

theoretic model. This strategy restricts the domain of candidate prototypes that are

potential focal elements. This avoids having to assign DS masses to “unnecessary”

or “weak” candidates.

We propose two methods of reducing the domain of candidates to be focal

elements:

• Column weights associated method: This is described above where the focal

elements are restricted by the criterion associated with the column weights

vector, C. The criteria to determine the number of focal elements, P , is

P =
N∑
i=1

Ti, (4.22)
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where

Ti =

1, if Ci > 0;

0, if Ci ≤ 0.

(4.23)

The vector T = [T1, T2 · · · , TN ] is an indicator vector which identifies the

candidates that will later constitute the focal elements of our DS theoretic

model. Let us define a mass measure vector H = [H1, H2 · · · , HN ] as

Hi =
Ci + |Ci|

2
. (4.24)

Clearly, Hi ∈ [0, (N − 1)], ∀ i ∈ 1, N . Note that, H is identical to C, except

that it substitutes 0 for all the non-positive elements of C.

• Column+row weights associated method: This method restricts the candidate

selection even further by placing constraints using both the column weights

vector and the row weights vector, Ri, which is defined as

R =
[
R1 R2 · · · RN

]T
= ∆W JN1. (4.25)

The criterion used in this column+row weights associated method uses the

indicator T = [T1, T2, · · · , TN ]T , where

Ti =

1 if Ri ≤ 0 and Ci > 0;

0, otherwise.

(4.26)

Correspondingly, the number of focal elements is given by

P =
N∑
i=1

Ti, (4.27)
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which generates the following mass measure vector:

H = CTdiag(T). (4.28)

DS Mass Allocation

The proposed mass measure vector contains information regarding the strength of the

propositions that warrant being focal elements. Crucial variables for the allocation

of the DS theoretic masses are the mass measure vector elements (Hi), the amount of

focal elements (P ), and the length of the mass measure vector (N). These variables

(P,N,Hi) adjust in accordance to each unique scenario.

The method that is proposed for determining the DS Mass allocation is designed

around the previous discussed extreme case scenario (ECS). The amount of scenarios

were limited since the incorporation of every scenario would be a monumental task

and computationally complex. However, the design around the ECS method allows

for the generalization to all other cases. Although the design is constrained to fit

this specific paradigm of the ECS, we show through numerical examples in the later

section that the paradigm has validity beyond this special case.

In order to incorporate each possible scenario to properly depict appropriate DS

theoretic masses for various values of N and P , we define three types of functions

minimum uncertainty ratio Mu(P,N), maximum mass measure, Mm(P,N), and total

mass measure, Tm(P,N). The designed quantities mentioned above are formulated

to logically fit the DS theoretic framework around the ECS of having only ones and

zeros as correlation coefficients.

Maximum Mass Measure: The maximum mass measure is achieved only when

the correlation coefficients Vi, are restricted to the values 1 s and 0 s only (the ECS).

Maximum mass measure informs us of the maximum possible mass that is achievable

when all the elements in the mass measure vector are summed. The achievable

maximum mass measure, for given values of N and P , will always be the same,
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regardless of how V is distributed. In Section A.1, we show that

Mm(P,N) = −P 2 +NP, (4.29)

where N is the correlation coefficient vector length, and P is the number of focal

elements that will be assigned.

Minimum Uncertainty Ratio: When the maximum mass measure is achieved for a

specific combination of N and P values, the ECS occurs. We are then provided with P

conflicting perfect matches (obtaining a perfect match constitutes optimal “strength”

and “distance”). Thus due to the conflict an uncertainty must be accounted and as

more conflict is presented, the uncertainty should increase.

The uncertainty assignment is consequently formulated to contain meaning

regarding the relationship between the total amount of candidates, N , and the reduced

set of focal elements P . Every element that is assigned a one will be a focal element,

and every zero that is assigned will be a proposition of zero mass measure. This

yields P ones, and (N − 1−P ) zeros. Examples of coherent uncertainty assignments

regarding the relationship between N and P are demonstrated in Table 4.1.

Table 4.1: Assignment of Uncertainty with Regards to P and N .

P N M(Θ)
1 128 0
32 128 .25
64 128 .50
96 128 .75
128 128 1.0

In Table 4.1, we can note when the ∆W matrix reduces all the candidates down

to one focal element, no conflicting information is presented, consequently M(Θ) = 0.

However, if we are only able to reduce half of the candidates shown in the example

when N = 128 and P = 64 then, M(Θ) = 0.50. Therefore, based on this unique ones

and zeros, case our uncertainty should be approximately set to M(Θ) = P
N

. This

ratio, M(Θ) = P
N

, reflects the calculated values set in Table 4.1, except for when
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P = 1. In order to account for all ranges of P for the ones and zeros case, we can

approximate the assignment of the uncertainty, M(Θ), by the following ratio,

P − 1

N − 1
. (4.30)

Total Mass Measure: Applying the maximum mass measure and the minimum

uncertainty we obtain the total mass measure function based around this unique ones

and zeros case. Let us calculate Tm(P,N) by using Mm(P,N), and the minimum

uncertainty ratio defined in equation 4.30 by

Tm(P,N)−Mm(P,N)

Tm(P,N)
=
P − 1

N − 1

1

Tm(P,N)
= (−1 +

P − 1

N − 1
)

1

−Mm(P,N)

1

Tm(P,N)
= (

P −N
(N − 1)(P 2 −NP )

Tm(P,N) = (N − 1)P. (4.31)

Equation 4.31 can be conceptualized as the maximum possible attainable mass given

the number of focal elements, P . Since the diagonal elements in ∆W will always be

zero, we do not want to account for these elements in the total mass measure. Note

that in equation 4.31, N-1 is formulated to remove these diagonal elements for the

calculation of the total mass measure.

Recall in Subsection 4.2.2, we presented various cases that demonstrate the effects

of competing values on the column weights Ci. The subsection demonstrated that

when increased competition between correlation coefficient values are presented, the

column weights are reduced. This reduction of column weight is dependent on the

adjacent competing correlation coefficient values.

The total mass measure treats adjacent competing values independently, and

consequently are not affected by adjacent competing column vectors. Therefore, each

independent column produces a weight of (N − 1), defined in Equation 4.25. Thus,
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P independent columns (corresponding to each focal element), yields a total mass

measure of (N − 1)P .

Figure 4.4: Mass Measure in Relation to Number of Focal Element

Systematic Example Model: In Figure 4.4, the Maximum Mass Measure function

(red), and total mass measure (blue), are modeling a mass measure vector with 128

elements, over the entire range of focal elements, P . The Maximum Mass Measure

function is a parabola that is concave down and symmetric around the vertex at P =

N/2 (Location B). The parabola’s shape is associated to how ∆W elicits competition.

Recall, Subsection 4.2.2 for cases 1 and 2: two competing Vi = 1’s can reduce an

individual’s column vector’s weight. However, these cases demonstrate how column

weights have the potential to be redistributed to adjacent columns. In Figure 4.4, the

redistribution of weights to adjacent columns causes an increase inMm(P,N) between

the interval of 1 < P > N/2 (Locations A and B). When P > N/2 occurs, there are

too many competitors and ∆W is unable to reduce the candidates causing Mm(P,N)

to decrease. Therefore, Figure 4.4 demonstrates that the Maximum Proposal Weight
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dynamically changes as we introduce additional Vi’s, which meet the focal element

criteria.

In Figure 4.4, there are five sets of labels that are shown. These labels contain

the coordinates X and Y , where X is P , and Y is the mass measure. These labels

are presented to demonstrate the assigned mass measure regarding its relationship

to the uncertainty for the unique ones and zeros case. Table 4.2 demonstrates

the uncertainty assignment regarding the following labels in Figure 4.4 using the

maximum mass measure and total mass measure.

Table 4.2: Assignment of Uncertainty with Regards to Systemic Weights.

P N Mm(P,N) Tm(P,N) M(Θ)
1 128 127 127 0.0
32 128 3072 4064 0.244
64 128 4096 8128 0.496
96 128 3072 12192 0.748
128 128 0 16256 1.0

The Maximum Mass Measure is only obtained when the correlation coefficients

are solely assigned ones and zeros. When the maximum mass measure is not obtained,

a residual mass measure, Residual = Mm(P )−
∑N

i=1 H, is formed and relocated to

the uncertainty. The residual mass measure occurs when the sum of H is less then

Mm(P ).

DS Masses Defined: Thus, we calculate the uncertainty and adjust the mass

measure vector’s elements to DS masses as

M(A) =



1−


N∑
i=1

Hi

Tm(P,N)

 , for A = Θ;

Hi

 1−m(Θ)

N∑
i=1

Hi

 for A = Hi,

(4.32)
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where Θ = {V1, V2, · · · , VN} is the the FoD consisting of the singletons Hi, i ∈ 1, N .

General Examples for Arbitrary Correlation Coefficients

General cases of arbitrary correlation coefficient values (Y and Z) are provided to

demonstrate the assignment of DS masses and uncertainty. The three examples below

are demonstrated with the N = 4 case.

Example i: V = [Y, Y, Y, Y ]T . This example demonstrates the special case when all

the correlation coefficients are equivalent. In this case, the weight matrix is

∆W =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

which yields the following column weights,

C = [0, 0, 0, 0]T .

Implementing the column weights associated method, we obtain zero focal elements

(P = 0), and a mass measure vector,

H = [0, 0, 0, 0]T .

The assigned DS masses and uncertainty are

M =



M(V1)

M(V2)

M(V3)

M(V4)

M(Θ)


=



0

0

0

0

1


.
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Notice, that all the prototypes are equally competitive (neither prototype is a better

match for the unknown specimen). This produces a scenario of maximum conflict

generating an uncertainty, M(Θ = 1).

Example ii: V = [Y, Y, Y, Z]T . This example presents the scenario when all the

correlation coefficients are equivalent, except for one, where Z > V . In this case, the

weight matrix is

∆W =


0 0 0 Z(Z − Y )

0 0 0 Z(Z − Y )

0 0 0 Z(Z − Y )

Y (Y − Z) Y (Y − Z) Y (Y − Z) 0

 ,

which yields the following column weights,

C = [Y (Y − Z), Y (Y − Z), Y (Y − Z), 3Z(Z − Y )]T .

Implementing the column weights associated method, we obtain a single focal element

(P = 1), and a mass measure vector,

H = [0, 0, 0, 3Z(Z − Y )]T .

The assigned DS masses and uncertainty are

M =



M(V1)

M(V2)

M(V3)

M(V4)

M(Θ)


=



0

0

0

3Z(Z−Y )
1(3)

1− 3Z(Z−Y )
1(3)


,

Notice, the mass assignment for M(V4) and M(Θ) are dependent on the “distance”

between Z and Y . As the “distance” between Z and Y increases, the mass of M(Θ)
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decreases and the mass of M(V4) increases. The maximum “distance” achievable is

when Z = 1 and Y = 0, yielding M = [0, 0, 0, 1, 0]T , thus representing no conflict.

However, if the “distance” between Z and Y decreases, the mass of M(Θ) increases,

thus causing the mass of M(V4) to decrease. The minimum achievable “distance”

occurs when Z approaches Y , where Z ≈ Y . As we approach this minimum distance,

we converge to the scenario of maximum conflict (as shown in Example i), where

M = [0, 0, 0, 0, 1]T .

Example iii: V = [Y, Y, Z, Z]T . This presents half the correlation coefficients in

vector as one value and the other half as another competing value, where Z > Y . In

this case, the weight matrix is

∆W =


0 0 Z(Z − Y ) Z(Z − Y )

0 0 Z(Z − Y ) Z(Z − Y )

Y (Y − Z) Y (Y − Z) 0 0

Y (Y − Z) Y (Y − Z) 0 0

 ,

which yields the following column weights,

C = [2Y (Y − Z), 2Y (Y − Z), 2Z(Z − Y ), 2Z(Z − Y )]T .

Implementing the column weights associated method, we obtain a two focal elements

(P = 2), and a mass measure vector,

H = [0, 0, 2Z(Z − Y ), 2Z(Z − Y )]T .

Compare this mass assignment to Example ii, although the mass assignment is still

dependent on the “distance” between Z and Y , the magnitude of the mass assignment

was reduced from 3Z to 2Z. The assigned DS masses and uncertainty are
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M =



M(V1)

M(V2)

M(V3)

M(V4)

M(Θ)


=



0

0

2Z(Z−Y )
(3)(2)

2Z(Z−Y )
(3)(2)

1− (4Z(Z−Y )
(3)(2)

)


.

This reduction of magnitude is attributed to having additional competing

prototypes. Furthermore, notice how the range of M(Θ) is constrained from the

previous example’s competing prototypes. M(Θ) will never achieve zero, even when

M(V3), and M(V4) reaches a maximum “distance” between Z and Y . The range of

M(Θ) is bounded between .33 and 1 because of the amount of focal elements present

in the vector. This boundary is defined by the minimum uncertainty which was

describe by the ratio of P and N , in Equation 4.30. For this example, we want an

uncertainty range from .5 to 1, which fits the ideal ratio of P
N

. As N increases we

approach a better fit to this ideal ratio. In typical applications, the N value is not

small, allowing a better approximated value of P
N

. As N increases, we obtain a closer

approximation to this ideal uncertainty range, seen in previous Table 4.2.

Numerical Examples

Example i: V = [0.01, 0.03, 0.12, 0.98]T . This example presents V1, as the only strong

candidate in the set. This generates a weight matrix of

∆W =


0 −0.125 −0.232 −0.204

0.147 0 −0.172 −0.159

0.568 0.357 0 −0.030

0.666 0.440 0.040 0

 ,
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which yields the following column weights,

C = [−0.0110, −0.0306, −0.0792, 2.7244]T .

Implementing the column weights associated method, we obtain one focal element

(P = 1), and a mass measure vector,

H = [0, 0, 0, 2.7244]T ,

where
N∑
i=1

(Hi) = 2.7244.

The assigned DS masses and uncertainty are

M(V1)

M(V2)

M(V3)

M(V4)

M(Θ)


=



0

0

0

0.9081

0.0919


.

Example ii: V = [0.98, 0.83, 0.40, 0.30]T . This example presents V1 and V2, as

strong candidates in the set. The weight matrix is

∆W =


0 −0.125 −0.232 −0.204

0.147 0 −0.172 −0.159

0.568 0.357 0 −0.030

0.666 0.440 0.040 0

 ,

which yields the following column weights,

C = [1.3818, 0.6723, −0.3640, −0.3930]T .
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Implementing the column weights associated method, we obtain a two focal elements

(P = 2), and a mass measure vector,

H = [1.3818, 0.6723, 0, 0]T ,

where
N∑
i=1

(Hi) = 2.0541.

The assigned DS masses and uncertainty are

M(V1)

M(V2)

M(V3)

M(V4)

M(Θ)


=



0.2303

0.1120

0

0

0.6577


.

Example iii: V = [0.31, 0.32, 0.43, 0.44]T . This example presents multiple weak

candidates in the set. In this case, the weight matrix is

∆W =


0 0.0032 0.0516 0.0572

−0.00310 0.0473 0.0528

−0.0372 −0.0352 0 0.0044

−0.0403 −0.0384 −0.0043 0

 ,

which yields the following column weights,

C = [−0.0806, −0.0704, 0.0946, 0.1144]T .



www.manaraa.com

72

Implementing the column weights associated method, we obtain two focal elements

(P = 2), and a mass measure vector,

H = [0, 0, 0.0946, 0.1144]T ,

where
N∑
i=1

(Hi) = 0.2090.

The assigned DS masses and uncertainty are

M(V1)

M(V2)

M(V3)

M(V4)

M(Θ)


=



0

0

0.0158

0.0191

0.9652


.

In this example, we illustrate that with a weak set of correlation coefficients, masses

are still assigned to the stronger candidates, but the uncertainty increases.

Example iv: V = [0.31, 0.32, 0.73, 0.74]T . We use this example to compare

Example iii to demonstrate how uncertainty decreases if V3 and V4 become stronger

candidates. In this case, the weight matrix is

∆W =


0 0.0032 0.3066 0.3182

−0.0031 0 0.2993 0.3108

−0.1302 −0.1312 0 0.0074

−0.1333 −0.1344 −0.0073 0

 ,

which yields the following column weights,

C = [−0.2666, −0.2624, 0.5986, 0.6364]T .
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Implementing the column weights associated method, we obtain a two focal elements

(P = 2), and a mass measure vector,

H = [0, 0, 0.5986, 0.6364]T ,

where
N∑
i=1

(Hi) = 1.2350.

The assigned DS masses and uncertainty are

M(V1)

M(V2)

M(V3)

M(V4)

M(Θ)


=



0

0

0.0998

0.1061

0.7942


.
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Chapter 5

Simulations

The simulations in this chapter examine the functionality of the proposed method and

the feasibility of using DS theory for qualitative chemometric analysis. The data for

these simulations are obtained from the PhotoChemCAD and consequently processed

with the method discussed in Section 2.1.

We present these simulations under idealistic and adverse conditions, by adding

synthetic noise that was previously described in Section 2.3. Our method uses the

evidence models discussed in Section 4.1, where these models process the absorption

and emission spectrums under various noise conditions. DS theory’s Dempster’s

combinations rule is then applied to determine the analyte combination present within

a simulated unknown specimen.

5.1 Overview of the Proposed Method

In our work, we restricted our attention to seven chemicals, each of which is set

to have a uniform concentration of 0.5µM . The absorption spectra of these seven

chemicals are shown in Figures 5.1 and 5.2. These seven chemicals correspond to

the first seven chemicals in Tables 2.1 and 2.2 located in Section 2.1. The reason for

restricting our attention to these seven chemicals was mainly related to computational

complexity associated with running numerous permutations within the data set.

74
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This is done to examine the effects of different noise levels, generating different

evidence sources, and combination of evidence from these sources. The computation

complexity associated with the application of the proposed algorithm for classification

is not overly significant.

Figure 5.1: Oligopyrrole Absorption Data at .5µM

Figure 5.2: Dipyrrin Absorption Data at .5µM

Beer-Lamberts law of Additivity enabled us to produce 27 − 1 = 127 different

chemical combinations (a sample contains at least one chemical) from the original
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seven chemicals. Figure 5.3 shows the close spectral similarities corresponding to

these different combinations.

Figure 5.3: Absorption Spectra of the 127 Combinations at .5µM

We simulated the detection of these 127 combinations by running 1500 random

detection experiments to guarantee the examination of all 127 combinations. The

simulation encompasses different noise parameters of η, ranging from zero to two, by

incrementing η in 0.5 intervals.

As we discussed in Section 2.1.3, the quantum yield affects the intensity of the

emission spectrum. This value quantifies the dispersion of energy as emitted light

by the molecule. We incorporated this into our fluorescent model’s emission data

by implementing equation 2.4 and simulating excitation wavelengths from 400nm to

650nm by incrementing every 25nm. These simulations produce the eleven emission

spectra in Figures 5.4 and 5.5.
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Figure 5.4: Fluorescent Emission from λEx 400nm to 525nm
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Figure 5.5: Fluorescent Emission from λEx 550nm to 650nm

5.1.1 Overview of Detection Process and Experimental Sim-

ulations

The detection process and experimental simulations are summarized in the flow charts

in Figures 5.6 and 5.7. The process begins in Figure 5.6, where a random chemical

combination, XExp, is picked from the 127 possibilities. This random chemical

combination,XExp, will produce one unique absorption spectrum and eleven unique

emission spectra from the eleven excitation wavelengths. Each individual spectra is
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then processed to extract its associated four features: central coefficients, spectral

peaks, spectral intensity differential, and matched filter. In the flow chart, this is

referred to as “feature extraction”. The extracted feature is then compared against

the same feature corresponding to each possible chemical combination in the database,

The comparison is implemented via correlation coefficients. We then convert our

correlation coefficients to DS masses described in Section 4.2 and apply Dempster’s

combination rule (DCR) to obtain the fused DS masses. In the next step, we sort

the DS masses to evaluate each evidence model technique over the multiple fusions

of spectra shown in Figure 5.7.

Figure 5.6: Part 1: An Overview of the Simulation Process
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Figure 5.7: An Overview of DCR implementing Filter Bank Evidence

5.2 Colored Compression and Dilation Noise

The simulations that are provided examine the detection of the exact chemical

combination when noise is introduced into the spectrum. The following sections

presents noise levels ranging from η beginning at zero to two. When η is zero there

is obviously no noise presented within the system, and the pure signal is simulated

for detection. When η is two, it presents the most extreme noise situations for the

spectral signal. The spectral signal at localized areas is capable of being compressed

to zero or dilated to double in magnitude. The following simulations below are

presented with the noise parameters of a window length of 50nm and an α = 1.

In Figure 5.8, this magnitude affect of colored compression and dilation noise on the

fluorescent spectrum, as a function of η, is evident. This spectral sample is from

the absorption spectrum and lies at index 56, which is 0111000 in binary code. This

binary code represents the three additive chemicals that are presented in the figure;

Bis (5-mesityldiprinato) zinc, 5,10-Diaryl Zn-Chlorin and 5,10-Diaryl Zn-oxoChlorin.



www.manaraa.com

81

Figure 5.8: Different Noise Parameters of η
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5.3 The Assessment of Feature Extractions Meth-

ods For Evidence

Through the simulation process, we examined various stages of the algorithm at

different noise conditions. One of the stages is the evidence model’s correlation

coefficients. We evaluate this stage by examining if the random chemical in the

experiment is detected as one of the top 5 highest correlation coefficients in the set.

The top five correlation coefficients are represented by a Rank, where Rank 1 is

the first highest correlation coefficient and Rank 5 is the fifth highest. We initially

simulated the detection process with no noise for the data set to develop a baseline

of our detection capability. We then proceeded with increased conditions of noise.

This allows for the comparison of the Dempster Shafer Model’s detection results to be

evaluated downstream against the results of the correlation coefficients. The following

results are depicted in Figures 5.9 and 5.10.

Figure 5.9: Detection of the Absorption Spectrums Under Different Noise
Parameters of η Using Feature Extraction’s Correlation Coefficients
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Figure 5.10: Detection of the Emission Spectrums Under Different Noise Parameters of η Using Feature Extraction’s
Correlation Coefficients
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Matched Filter

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

η = 0.0 75.9% 84.1% 91.9% 100% 100%

η = 0.5 45.5% 66.7% 75.3% 83.6% 87.5%

η = 1.0 35.0% 53.4% 60.8% 67.5% 72.4%

η = 1.5 28.7% 46.4% 54.4% 61.5% 66.3%

η = 2.0 23.8% 38.3% 46.8% 54.3% 59.6%

Filter Bank

η = 0.0 75.9% 84.1% 91.9% 100% 100%

η = 0.5 44.1% 65.6% 74.7% 84.1% 87.2%

η = 1.0 30.0% 49.3% 57.8% 64.6% 69.8%

η = 1.5 23.6% 39.6% 47.3% 54.0% 59.2%

η = 2.0 18.9% 32.6% 39.0% 44.8% 50.1%

Derivative

η = 0.0 75.8% 84.1% 91.8% 100% 100%

η = 0.5 58.1% 74.9% 83.0% 89.9% 93.6%

η = 1.0 44.5% 61.4% 68.6% 74.8% 80.3%

η = 1.5 40.2% 55.9% 64.0% 69.7% 75.0%

η = 2.0 36.0% 50.7% 58.1% 64.0% 70.1%

Cepstral

η = 0.0 77.0% 84.7% 92.3% 100% 100%

η = 0.5 65.3% 81.8% 89.8% 98.0% 98.3%

η = 1.0 59.5% 79.3% 87.3% 95.1% 96.0%

η = 1.5 55.8% 74.6% 84.3% 92.1% 93.2%

η = 2.0 53.1% 72.3% 79.5% 88.5% 90.0%

Table 5.1: Average Detection Across Spectrum



www.manaraa.com

85

5.4 Accuracy Assessment of Correlation Coeffi-

cient Evidence Vs DCR Fusion

This section presents the accuracy of detecting unknown chemicals using correlation

coefficients and the fusion of the correlation coefficient information that was

manipulated to fit the DS theory framework. The dempster combination rule was

applied for this data to be fused. The following Figures: 5.6.3, 5.12, 5.11, and 5.6.3

show the accuracy of detection as a function of η, the noise. These figures only analyze

Rank 1, which is when the highest correlation coefficient or DS Mass is chosen. In

these Figures two curves are bolded DCR Fusion and Average. DCR Fusion is the

fusion of all 12 spectra, over a single evidence technique. DCR Fusion is bolded to

highlight the importance and the final results of the decision. Average is the average

accuracy of the correlation coefficients from the 12 spectra that are examined. This

is bolded to simply obtain a single reference for comparison against the DCR Fusion

result in order to gauge the algorithms improvement.
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Figure 5.11: Cepstral Analysis: Detection Comparison of Dempster Combination Rule and Correlation Coefficients
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Figure 5.12: Derivative Analysis: Detection Comparison of Dempster Combination Rule and Correlation Coefficients
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Figure 5.13: Filter Bank Analysis: Detection Comparison of Dempster Combination Rule and Correlation Coefficients
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Figure 5.14: Matched Filter Analysis: Detection Comparison of Dempster Combination Rule and Correlation Coefficients
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5.4.1 Coefficient Distributions and Dempster Uncertainty

As we discussed in Section 4.2, the correlation coefficients of the evidence model

are used to determine the DS mass and uncertainty. This section examines the

uncertainty from the simulation data and then compares it to correlation coefficient’s

distribution. The following Table 5.2 is the average uncertainty assignment for each

associated spectrum and evidence model, over the 1500 simulations, for the noise

parameter when η = 1.5.

Table 5.2: Averaged Uncertainty Specific to Each Evidence

Absorption: Averaged Uncertainty

Cepstral Filter Bank Derivative Matched Filter

0.95 0.932 0.711 0.913

Emission: Averaged Uncertainty

Cepstral

λ400 λ425 λ450 λ475 λ500 λ525 λ550 λ575 λ600 λ625 λ650

0.987 0.986 0.986 0.987 0.999 0.999 0.999 0.998 0.999 .999 0.999

Filter Bank

λ400 λ425 λ450 λ475 λ500 λ525 λ550 λ575 λ600 λ625 λ650

0.842 0.807 0.676 0.632 0.623 0.865 0.873 0.896 .909 0.942 0.970

Derivative

λ400 λ425 λ450 λ475 λ500 λ525 λ550 λ575 λ600 λ625 λ650

0.718 0.534 0.573 0.554 0.583 0.642 0.605 0.554 0.632 .790 0.962

Matched Filter

λ400 λ425 λ450 λ475 λ500 λ525 λ550 λ575 λ600 λ625 λ650

0.825 0.753 0.681 0.633 0.625 0.815 0.815 0.808 0.853 .886 0.945

The histograms presented in Figure 5.15, are the 127 correlation coefficients

that were assigned to each simulation for the 1500 simulations that were generated.

These correlation coefficient histograms are from the emission spectra at the λ425
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excitation wavelength with respect to a specific evidence model. This specific

excitation wavelength and their respective evidence models were chosen since their

respective assigned uncertainty was wide ranging relative to each other. This best

demonstrates the algorithms uncertainty assignment and its association with the

correlation coefficient’s distribution over the set.

Figure 5.15: Histogram of Emission Feature’s Coefficients (λ425)
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5.5 Fusion Over Spectra

In process flow chart 5.7, we demonstrated the fusion of the 12 spectra with respect

to an individual evidence model. The final fusion result will be altered, based on the

order of the fusion of spectra. The order of how the spectra is fused is irrelevant,

since the dempster combination rule is associative and distributive. Figure 5.16 and

5.17 shows the accuracy of the fusion as each spectrum is fused with the previous

while keeping a single evidence model constant over the fusion process. This fusion

is shown for two noise levels η = 0.5 and η = 2.0.

Figure 5.16: Fusion Across Numerous Spectra at η = 0.5
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Figure 5.17: Fusion Across Numerous Spectra at η = 2.0

5.6 Combinations of Different Variations of Evi-

dence

This section reports the fusion accuracy over the first five ranks and their associated

assigned uncertainty. We then examine the fusion accuracy of various combinations

of evidence methods and their associated uncertainty.
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5.6.1 Fusion of One Form of Evidence

Table 5.3: Fusion of One Form of Evidence

Matched Filter

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Θ

η = 0.5 100% 100% 100% 100% 100% .232

η = 1.0 79.6% 91.8% 97.5% 99.1% 100% .231

η = 1.5 73.2% 81.5% 89.6% 92.9% 97.0% .230

η = 2.0 60.0% 73.9% 82.3% 88.3% 90.9% .229

Filter Bank

η = 0.5 99.2% 100% 100% 100% 100% .265

η = 1.0 86.9% 93.9% 97.4% 99.3% 100% .266

η = 1.5 75.3% 85.4% 88.5% 91.8% 98.3% .266

η = 2.0 59.6% 79.3% 85.5% 88.6% 88.9% .268

Derivative

η = 0.5 100% 100% 100% 100% 100% .119

η = 1.0 81.7% 89.6% 96.3% 96.3% 98.4% .120

η = 1.5 62.1% 72.5% 89.3% 91.3% 93.7% .123

η = 2.0 57.9% 68.0% 80.7% 87.8% 91.4% .127

Cepstral

η = 0.5 100% 100% 100% 100% 100% .900

η = 1.0 100% 100% 100% 100% 100% .900

η = 1.5 100% 100% 100% 100% 100% .900

η = 2.0 99.4% 100% 100% 100% 100% .900
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5.6.2 Fusion of Two Forms of Evidence:

Table 5.4: Fusion of two Methods of Evidence Part A

Matched Filter and Filter Bank

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Θ

η = 0.5 99.2% 100% 100% 100% 100% .140

η = 1.0 82.8% 94.1% 99.5% 100% 100% .140

η = 1.5 76.4% 85.4% 91.3% 96.4% 98.0% .139

η = 2.0 64.5% 77.1% 86.3% 91.6% 95.4% .139

Derivative and Filter Bank

η = 0.5 100% 100% 100% 100% 100% .087

η = 1.0 83.2% 90.7% 96.3% 96.3% 100% .088

η = 1.5 68.1% 83.3% 91.7% 93.7% 95.1% .090

η = 2.0 58.6% 69.4% 82.2% 89.3% 91.9% .092

Derivative and Cepstral

η = 0.5 100% 100% 100% 100% 100% .117

η = 1.0 81.7% 90.0% 96.3% 96.8% 98.9% .119

η = 1.5 62.1% 76.7% 89.3% 92.6% 95.1% .122

η = 2.0 58.5% 70.2% 82.1% 88.7% 92.3% .125

Matched Filter and Cepstral

η = 0.5 100% 100% 100% 100% 100% .228

η = 1.0 80.4% 91.8% 99.1% 99.1% 100% .227

η = 1.5 74.8% 81.5% 89.6% 93.9% 97.0% .225

η = 2.0 61.7% 74.6% 82.9% 89.7% 92.3% .224
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Table 5.5: Fusion of two Forms Evidence Part B

Matched Filter and Derivative

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Θ

η = 0.5 100% 100% 100% 100% 100% .083

η = 1.0 83.2% 90.0% 96.3% 96.3% 98.9% .083

η = 1.5 67.5% 80.8% 89.0% 92.8% 94.7% .085

η = 2.0 57.9% 69.4% 82.0% 88.5% 90.6% .087

Cepstral and Filter Bank

η = 0.5 100% 100% 100% 100% 100% .260

η = 1.0 87.7% 94.8% 97.4% 99.3% 100% .260

η = 1.5 76.1% 85.4% 89.0% 93.9% 99.3% .260

η = 2.0 61.5% 80.5% 86.2% 89.0% 90.9% .261
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5.6.3 Fusion of Multiple Methods of Evidence

Table 5.6: Fusion of Multiple Forms of Evidence

Derivative, Cepstral, and Filter Bank

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Θ

η = 0.5 100% 100% 100% 100% 100% .086

η = 1.0 83.2% 90.7% 96.3% 96.8% 100% .087

η = 1.5 68.1% 83.7% 91.7% 94.1% 95.7% .089

η = 2.0 59.2% 71.3% 82.2% 90.1% 92.9% .091

Derivative, Filter Bank, and Matched Filter

η = 0.5 100% 100% 100% 100% 100% .065

η = 1.0 83.2% 90.7% 96.3% 96.8% 100% .066

η = 1.5 69.8% 82.5% 91.7% 94.1% 95.7% .067

η = 2.0 58.6% 69.4% 82.2% 89.3% 91.5% .068

Derivative, Cepstral, and Match

η = 0.5 100% 100% 100% 100% 100% .082

η = 1.0 83.2% 90.7% 96.3% 96.8% 100% .083

η = 1.5 67.5% 82.0% 90.2% 94.1% 94.7% .084

η = 2.0 58.5% 71.3% 82.2% 90.1% 92.4% .086

Cepstral, Filter Bank and Matched Filtering

η = 0.5 100% 100% 100% 100% 100% .138

η = 1.0 83.6% 94.1% 99.5% 100% 100% .138

η = 1.5 78.0% 85.4% 92.1% 96.9% 98.0% .138

η = 2.0 68.1% 78.5% 87.1% 91.6% 95.4% .137
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Table 5.7: Fusion of Multiple Forms of Evidence

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Θ

Cepstral, Filter Bank, Matched Filtering, and Derivative

η = 0.5 100% 100% 100% 100% 100 .065

η = 1.0 83.2% 91.1% 96.3% 96.8% 100% .066

η = 1.5 69.8% 82.5% 91.7% 94.1% 95.7% .067

η = 2.0 59.2% 71.3% 82.0% 91.1% 92.8% .068
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Chapter 6

Conclusion and Future Results

We have proposed a novel qualitative algorithm using Dempster-Shafer Theory

to be introduced into the chemometric field for the detection of specific analyte

combinations, which are close in chemical composition. The design of this novel

method led in the development of an algorithm for converting correlation coefficients

to fit the Dempster-Shafer Theory’s framework for their respective masses and

uncertainty. In the process of the development of this algorithm, we have developed

unique modeling techniques for situations when spectroscopy data is scarce or

unavailable.

The developed spectroscopy modeling techniques, were designed to mimic the

typical behavior of absorption and emission spectrum in order to obtain a challenging

and legitimate spectroscopy detection problem. This detection challenge could be

seen in Figure 5.5 in the emission spectra for excitation wavelengths 575nm, 600nm,

625nm, and 650nm by examining the magnitude difference of the two chemical

classes, where Oligopyrole is 10−5 and Dipyrrin is 10−24. The evidence methods

implemented were not capable of resolving such differences in resolution at those

excitation wavelengths. This can be seen in Figure 5.10, under ideal conditions,

η = 0, where this difficulty is demonstrated in our detection at the respective emission

spectrums. The spectroscopy model only produced one spectrum for a chemical’s

absorption and respective excitation. We overcame this obstacle with our unique

99
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development of a synthetic correlated noise algorithm to produce additional testing

data under various conditions.

The performance of the evidence methods (using the highest correlation coefficient

as a match) seen in Figures 5.9 and 5.10, show that the best methods, respectively:

Cepstral, Derivative, Matched Filtering and Filter Banks. This performance of the

evidence methods is more apparent in Table 5.1, where the detection accuracy over

the 12 spectra is averaged with respect to individual evidence methods. In Table 5.2,

the uncertainty with respect to each individual evidence source across spectra has

a small variance. The design for the assignment of the uncertainty was based on

the correlation coefficient’s magnitude and distance relative to the entire set of

coefficients. The assignment of the uncertainty could be thought as being associated

to how the correlations coefficients are distributed within the set. This association

of uncertainty and the correlation coefficient’s distribution is shown in Figure 5.15,

where three evidence methods (Cepstral, Filter Bank, and Derivative) are presented

from the emission spectrum at λ425. This respective uncertainty for these methods

were .986, .807, and .534. In Figure 5.15, the Cepstral evidence distribution is favored

in reporting only high correlation coefficient values. Hence, the uncertainty is the high

due to the conflict. Likewise, as the distributions of the correlation coefficients tend to

spread, yielding less conflict, the uncertainty decreases in the cases of the filter bank

and derivative evidence. Since, there is a small variance between the uncertainty

across spectra with respect to an individual evidence method. We can deduce that

the evidence method has strong association with distinguishing conflict within the set

and creating distinctive features to classify individual spectrums from the set is the

integral component to reduce the uncertainty. This also highlights that over the set

of spectra presented there not an ideal spectrum that best differentiates a chemical

better then another spectrum.

In figures 5.11, 5.12, and we can note, that regardless of incorrect information from

different spectra using different evidence methods when the dempster combination

rule is implemented to the data for fusion we can obtain a more accurate detection
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rate. However, in Figures 5.16 and 5.17 we can note that regardless of the

eta presented after first initial couple of fusions over the spectra their detection

improvements in the algorithm are limited. We can infer from this that all 11

DCR fusion are unnecessary for the improvement in the detection. The proposed

DS Theory method, under the most extreme noise conditions,η = 2.0, has shown a

detection accuracy of 99 percent at Rank 1, using solely the cepstral based evidence

source. This is an increase of 46.3 percent detection when compared to choosing

the Rank 1 averaged correlation coefficient over the 12 spectra and 1500 simulations.

Cepstral was the largest detection gain when η = 2.0, when compared to the other

evidence methods. The sole implementation of the Cepstral based evidence source

using Dempster-Shafer Theory has proven the best indictor of detecting analytes in

this study. This is possibly due to its robustness against noise and by taking the

log of the spectra to highlight subtle changes from underlying chemicals. Despite the

high level of detection, the uncertainty remains high at .90. However, there are other

fusion combinations of evidence that provide low uncertainty and suitable levels of

detection above .90 at Rank 5.

In future studies, different scaling schemes and implementations of logarithmic

functions should be applied to handle such resolutions issues. For the purposes of

water borne toxins and water safety, this method has merit for the groundwork as an

initial alert system in the detection of chemicals in a water sources. By examining

the concurrent ranks, we can achieve above 90 percent detection of the top five most

probable chemicals, with a low uncertainty. In addition, further work could be added

for the decision process of the DS Theory Model. Such information as pH, turbidity,

and electrical conductivity are all feasible and insightful information sources that

could provide additional fusion techniques for the future as chemical indicators.
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Appendix A

Chapter 4 Proofs

A.1 Proof: Maximum Mass Measure

Consider the correlation coefficient vector

V =
[
V1 V2 · · · VN

]T
, where Vi ∈ [0, 1], ∀i ∈ 1, N. (A.1)

Generate the following matrix associated with V:

∆W =


V1∆V11 V2∆V21 . . . VN∆VN1

V1∆V12 V2∆V22 . . . VN∆VN2

...
...

. . .
...

V1∆V1N V2∆V2N . . . VN∆VNN

 , (A.2)

where ∆Vij = (Vi− Vj). Next, generate a column weights vector, C, by summing the

elements of each column of ∆W:

C =

[
N V 2

1 − V1

N∑
i=1

Vi N V 2
2 − V2

N∑
i=1

Vi . . . N V 2
j − Vj

N∑
i=1

Vi . . . N V 2
N − VN

N∑
i=1

Vi

]
.

(A.3)
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Let the summation of the elements in vector C be Mm. Then,

Mm =
N∑
j=1

Cj =
N∑
j=1

(
N V 2

j − Vj
N∑
i=1

Vi

)
= N

N∑
j=1

V 2
j −

(
N∑
j=1

Vj

)2

. (A.4)

We now consider the following problem:

find Mmmax = max

{
Mm :

N∑
i=1

Vi is kept constant with Vi ∈ [0, 1], ∀i ∈ 1, N

}
.

(A.5)

To address this problem, let us ‘separate’ out the two arbitrary terms Vk and V` from

Mm:

Mm = N

 N∑
i=1
i 6=k,`

V 2
i + V 2

k + V 2
`

−
 N∑

i=1
i 6=k,`

Vi + Vk + V`


2

. (A.6)

Suppose, for some ρ ≥ 0, we change Vk to V̂k = Vk− ρ and change V` by the same

amount to V̂` = V` + ρ, while ensuring that the updated values of V̂ and V̂` remain

bounded in [0, 1]. We will refer to this ‘value migration’ from Vk to V` as skewing

from Vk to V`. Then the resulting expression corresponding Mm yields

M̂m = N

 N∑
i=1
i 6=k,`

V 2
i + V̂ 2

k + V̂ 2
`

−
 N∑

i=1
i 6=k,`

Vi + V̂k + V̂`


2

= N

 N∑
i=1
i 6=k,`

V 2
i + (Vk − ρ)2 + (V` + ρ)2

−
 N∑

i=1
i 6=k,`

Vi + (Vk − ρ) + (V` + ρ)


2

.

(A.7)

So, the change in value of Mm due to skewing from Vk to V` os

M̂m−Mm = 2Nρ (V` − Vk) ≥ 0 ⇐⇒ V` ≥ Vk. (A.8)
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Note that, in order to ensure that V̂k ∈ [0, 1] and V̂` ∈ [0, 1], we must have

V̂k = Vk−ρ ≥ 0 and V̂` = V`+ρ ≤ 1 ⇐⇒ ρ ≤ Vk and ρ ≤ 1−Vk ⇐⇒ ρ ≤ min{Vk, 1−V`}.

(A.9)

So, we must upper bound ρ by

ρmax = min{Vk, 1− V`}. (A.10)

From (A.8), it is clear that M̂m achieves a maximum when ρ = ρmax. Note the

following:

If ρmax = Vk: V̂k = Vk − Vk = 0;

V̂` = V` + Vk;

If ρmax = 1− V`: V̂k = Vk − 1 + V` = (Vk + V`)− 1;

V̂` = V` + 1− V` = 1. (A.11)

So, skewing from Vk to V` to maximize M̂m renders either Vk to reach 0 (when

ρmax = Vk) or V` to reach 1 (when ρmax = 1− V`).

To determine Mmmax in (A.5), we may continue the above process as follows:

I. Pick a pair {Vi, Vj}, where Vi 6= 0 and Vj 6= 1.

II. Skew from min{Vi, Vj} to max{Vi, Vj} if Vi < Vj, or skew from Vi to Vj if Vi = Vj,

until either Vi reaches 0 or Vj reaches 1.

III. Repeat Step I until no pair {Vi, Vj}, where Vi 6= 0 and Vj 6= 1, can be found.

The resulting vector Vmax generates the maximum value Mmmax. This vector

Vmax takes one of two forms:

III.a. All entries of Vmax are either 0 or 1.

III.b. All entries, except one entry Vr where Vr ∈ (0, 1), of Vmax are either 0

or 1.
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Suppose the number of 1s in Vmax is K1. Then,

Mmmax = N

(
K1∑
j=1

12 + V 2
r

)
−

(
K1∑
j=1

1 + Vr

)2

= N(K1 + V 2
r )− (K1 + Vr)

2.

(A.12)

Note that

K1 = Integer part of
N∑
i=1

Vi; Vr = Fractional part of
N∑
i=1

Vi. (A.13)

Moreover, the elements of Vmax need not be ordered in a particular manner.
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